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RESUMO

Pedrosa, L. Modelagem QSAR (Relação Quantitativa Estrutura-Atividade),
busca por similaridade e triagem virtual para a identificação de inibidores de
Acetilcolinesterase (AChE) para a doença de Alzheimer. 2023. 118p. Monografia
(MBA em Inteligência Artificial e Big Data) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2023.

A doença de Alzheimer representa um desafio considerável tanto no campo da Inteligência
Artificial (IA) quanto na pesquisa em ciências da saúde. Nesse cenário desafiador, esta
pesquisa foi direcionada ao desenvolvimento de abordagens terapêuticas inovadoras para
combater essa doença neurodegenerativa. Entre essas abordagens, destaca-se a aplicação da
Inteligência Artificial, em particular a modelagem QSAR (Relação Quantitativa Estrutura-
Atividade), combinada com técnicas de aprendizado de máquina (machine learning) e
aprendizado profundo (deep learning). A enzima acetilcolinesterase (AChE) desempenha
um papel crucial na degradação da acetilcolina no cérebro, afetando diretamente a função
cognitiva. Inibir a AChE pode levar à acumulação de acetilcolina, o que, por sua vez, pode
melhorar a transmissão neural e aliviar os sintomas da doença de Alzheimer. Neste estudo,
vários modelos QSAR foram desenvolvidos utilizando técnicas de IA, como SVM (Máquina
de Vetores Suporte), Random Forest, Multilayer Perceptron e TensorFlow Keras. Além
disso, foram usados descritores moleculares para capturar as características específicas
dos compostos químicos, como Fingerprints de Morgan, SiRMS (Simplex Representation
of Molecular Structure) e RDKit. Esses modelos foram treinados e avaliados por meio
de validação cruzada estratificada, utilizando métricas estatísticas para determinar a sua
eficácia. Os modelos mais promissores, com base em seus hiperparâmetros e desempenho
na validação cruzada, foram selecionados para uma etapa adicional de triagem virtual. Essa
etapa envolveu a busca por compostos quimicamente semelhantes aos candidatos iniciais,
a fim de identificar novos inibidores da enzima AChE. Essa abordagem de modelagem
e triagem virtual, que combina resultados de modelos e busca por similaridade, tem o
potencial de contribuir significativamente para a descoberta de novos compostos promissores
no tratamento e prevenção da doença de Alzheimer. A integração de técnicas de IA,
modelagem molecular e triagem virtual oferece uma estratégia inovadora para abordar os
desafios associados à doença de Alzheimer, e os resultados deste estudo têm o potencial de
impactar positivamente o desenvolvimento de terapias para essa condição debilitante.

Palavras-chave: Relação Quantitativa Estrutura-Atividade. Classificação Binária. Busca
por Similaridade. Triagem Virtual. Aprendizado de Máquina. Aprendizado Profundo de
Máquina. Doença de Alzheimer.





ABSTRACT

Pedrosa, L. QSAR (Quantitative Structure-Activity Relationship) modeling,
similarity search, and virtual screening for identifying Acetylcholinesterase
(AChE) inhibitors for Alzheimer’s disease. 2023. 118p. Monograph (MBA in
Artificial Intelligence and Big Data) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2023.

Alzheimer’s disease represents a considerable challenge in both the field of Artificial
Intelligence (AI) and health sciences research. In this challenging scenario, this research was
aimed at developing innovative therapeutic approaches to combat this neurodegenerative
disease. Among these approaches, the application of Artificial Intelligence stands out,
in particular QSAR (Quantitative Structure-Activity Relationship) modeling, combined
with machine learning and deep learning techniques. The enzyme acetylcholinesterase
(AChE) plays a crucial role in the breakdown of acetylcholine in the brain, directly affecting
cognitive function. Inhibiting AChE can lead to the accumulation of acetylcholine, which
in turn can improve neural transmission and alleviate the symptoms of Alzheimer’s disease.
In this study, several QSAR models were developed using AI techniques such as SVM,
Random Forest, Multilayer Perceptron and TensorFlow Keras. Furthermore, molecular
descriptors were used to capture the specific characteristics of chemical compounds, such as
Morgan Fingerprints, SiRMS and RDKit. These models were trained and evaluated through
stratified cross-validation, using statistical metrics to determine their effectiveness. The
most promising models, based on their hyperparameters and cross-validation performance,
were selected for an additional virtual screening step. This step involved the search for
compounds chemically similar to the initial candidates, in order to identify new inhibitors
of the AChE enzyme. This virtual modeling and screening approach, which combines
model outputs and similarity searching, has the potential to contribute significantly to the
discovery of promising new compounds in the treatment and prevention of Alzheimer’s
disease. The integration of AI techniques, molecular modeling and virtual screening offers
an innovative strategy for addressing the challenges associated with Alzheimer’s disease,
and the results of this study have the potential to positively impact the development of
therapies for this debilitating condition.

Keywords: Quantitative Structure-Activity Relationship. Binary Classification. Similarity
Search. Virtual Screening. Machine Learning. Deep Machine Learning. Alzheimer’s Disease.
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1 INTRODUÇÃO

1.1 Contextualização

Alzheimer é uma das doenças neurodegenerativas mais comuns e é uma das princi-
pais causas de demência em todo o mundo. Ela afeta, principalmente, a memória e outras
funções cognitivas, como a capacidade de pensar, linguagem e tomar decisões. A sua
prevalência tem aumentado em função do envelhecimento da população. A sua patologia
é caracterizada pela formação de placas de beta-amiloide no cérebro, as quais podem
interferir nas funções cognitivas e levar a perda progressiva de memória, dificuldades
de comunicação, confusão, entre outros, e pode levar a uma completa dependência de
cuidadores (DELANOGARE et al., 2019).

Uma das abordagens terapêuticas para tratamento da doença de Alzheimer é
a inibição da enzima acetilcolinesterase (AChE), que está diretamente relacionada à
degradação da acetilcolina no cérebro, influenciando a função cognitiva. A acumulação de
acetilcolina, resultante da inibição da AChE, tem o potencial de melhorar a transmissão
neural, o que pode aliviar os sintomas associados à doença. Dessa forma, uma abordagem
promissora para o tratamento dessa doença inclui a identificação de novos compostos que
sejam capazes de inibir essa enzima (DHAMODHARAN; MOHAN, 2022).

Nesse contexto, os modelos QSAR (Quantitative Structure-Activity Relationship,
ou Relação Quantitativa entre Estrutura-Atividade) têm se mostrado uma ferramenta
importante para a descoberta de novos inibidores da AChE, fornecendo uma abordagem
computacional eficiente e econômica para avaliar a atividade desses compostos (SHARMA;
SHARMA, 2018).

Esses modelos conseguem prever a atividade biológica de compostos a partir de
suas estruturas moleculares e, portanto, podem identificar novos candidatos a inibidores
das enzimas de forma mais rápida e eficiente (PANTELEEV; GAO; JIA, 2018).

No entanto, ainda existem desafios a serem enfrentados para melhorar a precisão e a
confiabilidade dos modelos QSAR. Um deles seria determinar quais descritores moleculares,
algoritmos de aprendizado de máquina e aprendizado profundo de máquina são os mais
adequados para criar modelos QSAR eficientes e precisos para a predição de atividade de
inibidores da AChE (PATEL et al., 2020; BAO et al., 2023).

Adicionalmente, a criação de QSAR que combina diferentes métodos pode aumentar
a precisão das previsões de atividade biológica de moléculas candidatas a fármacos.
Essa abordagem pode incluir, por exemplo, o uso de diferentes tipos de descritores
moleculares (como Fingerprints de Morgan, SiRMS e RDKit), diferentes métodos de
seleção de descritores e diferentes algoritmos de aprendizado de máquina e aprendizado
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profundo. A principal finalidade é aproveitar as vantagens de cada método para gerar um
modelo de previsão de atividade biológica mais preciso e confiável, que possa ser utilizado
no desenvolvimento de novos fármacos (JANG et al., 2018).

1.2 Justificativa e motivação

Apesar de ser uma doença comum, não há uma cura definitiva para o Alzheimer e
os tratamentos atuais podem apenas amenizar os sintomas, mas não impedem a progressão
da doença. Segundo a Organização Mundial da Saúde (OMS), a doença de Alzheimer é a
forma mais comum de demência, respondendo por cerca de 60 a 70% dos casos. Estima-se
que cerca de 50 milhões de pessoas em todo o mundo tenham demência, e a cada ano são
registrados cerca de 10 milhões de novos casos (ORGANIZATION, 2021).

Esses dados destacam a importância da busca por novas terapias para a doença de
Alzheimer, e a identificação de novos compostos que possam inibir a AChE é uma das
estratégias promissoras na luta contra essa doença (DHAMODHARAN; MOHAN, 2022).

A utilização de técnicas de aprendizado de máquina e aprendizado profundo têm
se destacado como uma abordagem promissora na busca por novos compostos que possam
auxiliar no tratamento da doença de Alzheimer. No entanto, a escolha adequada dos
algoritmos e dos descritores moleculares utilizados é crucial para a obtenção de modelos
precisos e confiáveis (NEVES et al., 2018).

Outro fator fundamental é a validação dos modelos QSAR para garantir a eficácia e
confiabilidade desses modelos na identificação de novos compostos com potencial atividade
inibitória, e pode contribuir, significativamente, para o desenvolvimento de novas terapias
para a doença de Alzheimer (CARPENTER; HUANG, 2018).

1.3 Problema de pesquisa

Esta pesquisa visa avaliar e combinar diferentes algoritmos de aprendizado de
máquina e aprendizado profundo, utilizando diferentes tipos de descritores moleculares,
na tarefa de prever a atividade de inibidor da AChE para a doença de Alzheimer. A
escolha dos algoritmos e descritores moleculares adequados pode impactar na qualidade
dos modelos gerados e na eficácia da identificação de novos compostos (DHAMODHARAN;
MOHAN, 2022).

Compreender quais algoritmos e descritores moleculares são mais eficazes na tarefa
de predição pode fornecer informações valiosas para os pesquisadores envolvidos. Outro
ponto importante é que a escolha adequada de algoritmos e descritores moleculares pode
reduzir os custos e o tempo necessários para identificar novos compostos, tornando o
processo mais eficiente e econômico.
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Assim, a pergunta de pesquisa que este estudo pretendeu responder foi: como
diferentes abordagens de aprendizado de máquina, aprendizado profundo de máquina e
descritores moleculares podem ser combinados para desenvolver modelos QSAR precisos e
eficientes para a predição de atividade de inibidores da AChE para a doença de Alzheimer?

A resposta para essa pergunta tem potencial de contribuir com o desenvolvimento
de novas terapias para o tratamento da doença de Alzheimer, a qual tem sido um grande
desafio para a saúde pública.

1.4 Hipótese

Diante do exposto, este trabalho visou provar a seguinte hipótese: a criação de mo-
delos QSAR, combinando diferentes abordagens de aprendizado de máquina, aprendizado
profundo de máquina e descritores moleculares, resultará em uma maior capacidade de
generalização e precisão na predição de atividade de inibidores da AChE para a doença de
Alzheimer, em comparação com modelos QSAR criados com abordagens ou descritores
isolados. Além disso, espera-se que a seleção dos melhores modelos, com base em seus
hiperparâmetros dentro do domínio de aplicabilidade, possam ser utilizados como filtros
moleculares durante triagem virtual, culminando na identificação de novos compostos
promissores que possam aliviar os sintomas da doença de Alzheimer.

1.5 Objetivos

O objetivo geral deste estudo é realizar a triagem virtual para a identificação de
novos compostos inibidores promissores, utilizando diferentes abordagens de aprendizado
de máquina, aprendizado profundo e descritores moleculares como filtros moleculares.

Os objetivos específicos são:

• criar modelos QSAR usando diferentes abordagens (Support Vector Machine, Ran-
dom Forest, Multilayer Perceptron e TensorFlow Keras) com diferentes descritores
(Fingerprints de Morgan, SiRMS e RDKit) para a predição de atividade de inibidores
da AChE para a doença de Alzheimer;

• avaliar a eficácia dos modelos QSAR desenvolvidos por meio da validação cruzada
estratificada, usando métricas estatísticas apropriadas;

• realizar a busca por similaridade para identificação de compostos quimicamente
semelhantes aos candidatos iniciais;

• selecionar os melhores modelos, com base em seus hiperparâmetros dentro do domínio
de aplicabilidade, para serem utilizados como filtro molecular na etapa de triagem
virtual.
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• utilizar a abordagem de consenso dos resultados dos modelos e da busca por simi-
laridade para identificação de novos compostos inibidores da AChE que possam
ser promissores para o tratamento e prevenção da doença de Alzheimer durante a
triagem virtual.

Para o alcance desses objetivos, este trabalho foi organizado nos seguintes capítulos:

• Capítulo 2.1.6: apresenta os fundamentos teóricos sobre a quimioinformática para
compreender sobre modelos QSAR, as diferentes abordagens de aprendizado de
máquina adotadas, análise de similaridade e triagem virtual.

• Capítulo 3: apresenta o estado arte sobre o tema de pesquisa.

• Capítulo 4: apresenta a proposta deste estudo, incluindo os métodos de como serão
executados.

• Capítulo 5: apresenta os resultados encontrados.

• Capítulo 6: apresenta as considerações finais.
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2 FUNDAMENTAÇÃO TEÓRICA

Nesta seção é apresentado a fundamentação conceitual sobre as duas áreas envolvi-
das: quimioinformática e aprendizado de máquina.

2.1 Quimioinformática

2.1.1 Conceitos

Devido à ampliação do poder computacional das últimas décadas, assim como
o crescimento exponencial da velocidade de geração de dados e a necessidade de lidar
com grandes quantidades de informação química/biológica, o processo de descoberta de
fármacos foi estimulado a englobar de maneira crescente em seus processos de pesquisa e
desenvolvimento (P&D) abordagens tecnológicas. Isto culminou no fenômeno conhecido
como explosão de dados ou big data. Neste contexto, o desenvolvimento de ferramentas
capazes de extrair correlações e gerar modelos preditivos a partir de grandes volumes de
informação tornou-se uma questão central neste processo (FERREIRA; ANDRICOPULO,
2018).

A quimioinformática é uma área interdisciplinar que utiliza recursos das ciências
da computação e informação para resolver problemas da química (BUNIN et al., 2007),
os quais podem envolver diversos aspectos do processo de descoberta de candidatos a
fármacos, assim como construção de modelos QSAR (modelos de aprendizado de máquina),
mineração de dados (em bancos de dados químicos), mineração de grafos moleculares,
dentre outros (SHARMA; SHARMA, 2018). A quimioinformática evoluiu muito nos
últimos anos, desde técnicas de representação, manipulação e processamento de estruturas
químicas até a análise e exploração de grandes bases de dados (LO et al., 2018). Assim,
a quimioinformática e a inteligência artificial têm estimulado o campo da descoberta e
planejamento de candidatos a fármacos, sendo uma ferramenta indispensável para extrair
informações químicas de grandes bases de dados de compostos, apoiando o desenvolvimento
de fármacos de forma mais rápida e precisa (SHARMA; SHARMA, 2018; PANTELEEV;
GAO; JIA, 2018).

Vale destacar que a disponibilização dessas diversas e grandes bases de dados
só se tornou possível com a produção e armazenamento de dados biológicos e químicos,
produzidos pela química combinatória e por ensaios biológicos de alto desempenho (ZHU
et al., 2014). É importante frisar que analisar e explorar essas grandes bases de dados,
de forma manual, se tornou inviável. Nesse contexto, a computação, com suas diversas
ferramentas e técnicas, pode apoiar essa exploração, manipulação e processamento de
estruturas químicas, gerando modelos computacionais capazes de fazer previsão e apoiar no
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processo de descoberta e planejamento de novos candidatos a fármacos (CHEN; KOGEJ;
ENGKVIST, 2018; LO et al., 2018). Para tanto, estes compostos armazenados em bases
de dados são representados utilizando estruturas computacionais, as quais apresentaremos
na próxima seção.

2.1.2 Representação das estruturas

Um composto químico pode ser representado de diferentes formas gráficas para a
compreensão humana. Isso se dá a partir da disposição e conexões de seus átomos podendo
ser representados a partir das visualizações unidimensional (1D), bidimensional (2D) e
tridimensional (3D), conforme ilustra a Figura 1.

Figura 1 – Diferentes níveis de representação molecular. Fonte: Autoria própria.

Entretanto, para a captura e processamento da informação referente às estruturas
moleculares a partir de métodos computacionais, se faz necessária uma representação
computacional de tradução da informação química para informação computacional por
meio de noções lineares de representação de estruturas químicas. Portanto, para que o
computador possa capturar, processar e compreender a estrutura química dos compostos,
a mesma necessita estar descrita em uma sequência numérica única (ALVES et al., 2018),
caracterizada como uma assinatura digital exclusiva (INCHITRUST, 2020). As notações
lineares mais conhecidas e utilizadas para codificar as estruturas químicas são (Figuras 2 e
3):

• SMILES (do inglês, Simplified Molecular-Input Line-Entry System)

• SMARTS (do inglês, SMiles ARbitrary Target Specification)

• InChIKey (do inglês, International Union of Pure and Applied ChemistryKey)
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Figura 2 – Notação empregada para representar uma substância química no formato de
InChI (International Chemical Identifier). Fonte: Autoria própria.

Figura 3 – Exemplo de notação SMILES, SMARTS, InChI e InChIKey. Fonte: Autoria
própria.

Outros formatos também são utilizados para a representação molecular como os
formatos CT (Chemical ou Connection), sendo MDL MOL (ou molfile) e MDL SDF
(ou SDfile) os mais utilizados. Esses formatos representam as estruturas químicas como
se fossem grafos e as informações são armazenadas em uma tabela. A teoria dos grafos
descreve a relação de objetos em determinado conjunto por meio de vértices. Em arquivos
CT, átomos mais pesados que o hidrogênio correspondem aos vértices e ligações químicas
às arestas (Figura 4).
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Figura 4 – Representação molecular usando o formato MOL file. Fonte: Autoria própria.

Essas diferentes formas de representação das estruturas estão presentes em diversas
bases de dados, as quais serão descritas no próximo tópico.

2.1.3 Bases de dados

Atualmente, existem várias bases de dados disponíveis em ambiente virtual que
armazenam dados e informações relevantes para estudos de Química Medicinal. Elas
fornecem informações químicas e biológicas de substâncias, como propriedades físico-
químicas e resultados de ensaios in vitro, in vivo e, principalmente, resultados de triagem
de alto desempenho (HTS)1 (CHEN et al., 2018). São exemplos de base de dados contendo
informações químicas e biológicas de substâncias:

• BMRDB (Biological Magnetic Resonance Data Bank, www.bmrb.wisc.edu): é um
banco de dados de espectroscopia de ressonância magnética nuclear em proteínas,
peptídeos, ácidos nucléicos e outras biomoléculas (ULRICH et al., 2008).

• ChEMBL (www.ebi.ac.uk/chembl): possui dados químicos, biológicos e genômicos,
extraídos da literatura e de documentos de patentes, os quais podem ser usados para
apoiar a tradução de informações genômicas em novos candidatos a fármacos. Ela
possui 1.961.462 compostos e mais de 16.066.124 dados sobre atividades biológicas
(EMBL-EBI, 2020).

• DrugBank (www.drugbank.ca): apresenta recursos que combinam dados detalhados
sobre fármacos (produtos químicos, farmacológicos e farmacêuticos) e informações
abrangentes sobre os alvos de fármacos (sequência e estrutura) (CHEN et al., 2018).
A versão mais recente, publicada em julho de 2020, contém 13.580 entradas de
fármacos, incluindo 2.637 medicamentos aprovados (classificados como pequenas
moléculas), 1.378 produtos biológicos aprovados (proteínas, peptídeos, vacinas e

1 Do inglês High Throughput Screening.

http://www.bmrb.wisc.edu/
https://www.ebi.ac.uk/chembl/
https://www.drugbank.ca/
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alergênicos), 131 nutracêuticos e mais de 6.376 experimentais (em fase de descoberta)
(WISHART et al., 2018).

• KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg/pathway
.html): é uma base de dados que possui informações sobre genes e genomas para
interpretação funcional, além de informações químicas e sistêmicas para aplicação
prática de informações genômicas (KANEHISA et al., 2019).

• PDB (Protein Data Bank, www.rcsb.org): apresenta dados sobre biologia molecular,
estrutural e computacional, incluindo dados sobre as formas 3D de proteínas e ácidos
nucléicos (BERMAN; HENRICK; NAKAMURA, 2003).

• PubChem (pubchem.ncbi.nlm.nih.gov): é uma das maiores bases de dados que
fornece informações sobre substâncias químicas e suas atividades biológicas, envol-
vendo algumas subcategorias, como substância, composto e BioAssay. Além disso, é
possível encontrar informações sobre segurança e toxicidade, patentes, referências
dentre outras (NIH, 2020).

• STITCH (Search Tool for Interactions of Chemicals, stitch.embl.de): é uma base de
dados que fornece uma rede de interações química-proteína conhecidas e previstas.
As interações incluem associações diretas (físicas) e indiretas (funcionais); decorrem
de previsão computacional, de transferência de conhecimento entre organismos e
de interações agregadas de outros bancos de dados (primários). São mais de 2031
organismos identificados, 9,6 milhões de dados sobre proteínas e 1,6 bilhões de
informações sobre interações (SZKLARCZYK et al., 2016).

• SuperPred (prediction.charite.de): é uma base de dados que possui informações
sobre interações entre composto-alvo, conectando similaridade química de compostos
semelhantes a fármacos com alvos moleculares e abordagem terapêutica semelhantes
(NICKEL et al., 2014).

Além destas, existem outras bases de dados que podem ser utilizadas em estudos de
química medicinal, tais como ASDCD (Antifungal Synergistic Drug Combination Database),
BRENDA (The Comprehensive Enzyme Information System), CancerDR (Cancer Drug
Resistance Database), DCDB (Drug Combination Database), MATADOR (Manually
Annotated Targets and Drugs Online Resource), BindingDB (The Binding Database),
SuperTarget, TDR targets e Therapeutic Target Database (CHEN et al., 2018).

Essas bases de dados, em muitos casos, são utilizadas para a identificação de
compostos similares. No próximo tópico abordaremos a relevância da análise de similaridade
química e suas aplicações nos estudos de química medicinal.

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.rcsb.org/
http://pubchem.ncbi.nlm.nih.gov/
http://stitch.embl.de
http://prediction.charite.de/
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2.1.4 Análise de similaridade química

A semelhança das propriedades entre as moléculas ou similaridade química é um
dos conceitos mais explorados na quimioinformática. A similaridade química é importante
para estabelecer relações entre estrutura e atividade ou propriedade (QSAR ou QSPR) e
compreender o comportamento de determinado grupo de moléculas (MAGGIORA et al.,
2014).

A similaridade química contribui para encontrar erros experimentais ou cliffs, pares
de estruturas químicas semelhantes com atividade/propriedade muito diferentes em um
subgrupo de moléculas (GUHA; DRIE, 2008). Empregando métodos computacionais, a
similaridade é calculada aplicando-se uma função de similaridade (também chamada de
coeficiente de similaridade) com base nos descritores moleculares. Dentre as funções de
similaridade mais utilizadas, podem ser citados o coeficiente de Tanimoto, e as distâncias
Euclidiana e de Mahalanobis (MAGGIORA et al., 2014).

Qualquer tipo de descritor pode ser utilizado na análise de similaridade, mas os
descritores baseados em fragmentos moleculares, principalmente os do tipo impressão
digital ou fingerprints, são os mais utilizados por serem mais fáceis de interpretação
(WILLETT, 2006).

Como dito anteriormente, a similaridade química é importante para se estabelecer
relações entre estrutura e atividade ou propriedade (QSAR ou QSPR) e também compre-
ender o comportamento de determinado grupo de moléculas (MAGGIORA et al., 2014),
como será abordado no próximo tópico.

2.1.5 Relações Quantitativas entre Estrutura Química e Atividade - QSAR

A relação entre a estrutura química e a propriedade biológica ou propriedade físico-
química pode ser modelada por uma equação matemática, que pode ser chamada de relação
quantitativa estrutura-atividade (QSAR). Esta área tem como principal abordagem a
aplicação de diversos métodos estatísticos de análise de dados com o intuito de desenvolver
modelos que possam predizer corretamente determinada propriedade biológica de compostos
baseados em sua estrutura química. Para se estabelecer essa relação, é necessário o cálculo
de descritores moleculares e dados biológicos definidos experimentalmente (TROPSHA et
al., 2017). Como resultado, o modelo QSAR pode ser representado por meio da seguinte
equação:

Pi = k
′(D1, D2 · · · , Dn) (2.1)

em que, Pi é uma variável dependente que representa valores previstos da resposta biológica;
k

′ são coeficientes de ajustes aplicados nas variáveis independentes; e, D1, D2 · · · , Dn

são variáveis independentes, também chamadas de variáveis descritivas, e indicam as
propriedades referentes a valores que representam cada descritor molecular.
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Estudos de QSAR apresentam várias aplicações na área de planejamento de can-
didatos a fármacos, tais como (i) identificação de novos ligantes/protótipos com ativi-
dade/propriedade desejada; (ii) otimização da atividade/propriedade; e (iii) identificação
de compostos com efeitos potencialmente indesejados em estágios preliminares do desen-
volvimento (TROPSHA, 2010).

Com efeito, o crescente desenvolvimento das ciências “ômicas”, aliado ao aprimora-
mento de recursos computacionais, ao progressivo aumento da disponibilidade de conjuntos
de dados de alta qualidade e ao desenvolvimento de modelos preditivos, pode-se dizer que
o campo de estudos de QSAR e suas aplicações ainda é um campo fértil para pesquisas na
área de química medicinal (FOURCHES, 2014; GORB; KUZ’MIN; MURATOV, 2014).

Como apresentado anteriormente, os descritores moleculares são partes fundamen-
tais na geração de modelos de aprendizado de máquina. Abordaremos, a seguir, diferentes
estratégias computacionais para a obtenção de descritores moleculares.

2.1.6 Descritores Moleculares

Um descritor molecular é o resultado final de um procedimento matemático e
lógico que transforma informação química codificada em uma representação simbólica
de uma molécula em um número útil ou o resultado de algum experimento padronizado.
Descritores moleculares contribuem para a compreensão de propriedades moleculares e/ou
podem ser utilizados na geração de um modelo matemático para a previsão de determinada
propriedade de outras moléculas (TODESCHINI; CONSONNI, 2000).

Diferentes tipos de descritores químicos refletem diferentes níveis de representação
estrutural. Esses descritores podem ser classificados quanto à sua “dimensionalidade” em
unidimensionais (1D), baseados em propriedades físico-químicas e fórmula molecular (por
exemplo, massa molecular, refratividade molar, logP, entre outros); bidimensionais (2D),
que descrevem propriedades que podem ser calculadas a partir de uma representação
2D (tais como número de átomos, número de ligações, índices de conectividade, entre
outros); e tridimensionais (3D), que dependem da conformação das moléculas (por exemplo,
volume de van der Waals, área de superfície acessível ao solvente, entre outros) (XUE;
BAJORATH, 2000). Para desenvolver modelos de QSAR/QSPR, descritores e dados de
atividade/ propriedade são armazenados em uma tabela (Tabela 1). Nela, os dados de
atividade/propriedade são armazenados na matriz Y e os descritores na matriz X. Vários
tipos de relações podem ser obtidos a partir dessas matrizes. Modelos QSAR podem ser
gerados de forma categórica (por exemplo, ativos/inativos, tóxico/não tóxico) ou uma
relação quantitativa, na qual a propriedade estudada (Y) é representada por uma função
de um ou mais descritores (X) (PUZYN; LESZCZYNSKI; CRONIN, 2010).

A construção dos modelos, como apresentado anteriormente, vem da regressão
que relaciona um conjunto de atributos (descritores) de um composto químico e a sua
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Tabela 1 – Relação entre dados de atividade/propriedade e descritores moleculares.

Identificador
químico

Atividade /
propriedade Descritor 1 Desc. 2 Desc. 3 ... Descr. n

Molécula 1 Y1 X11 X12 X13 ... X1n

Molécula 2 Y2 X21 X22 X23 ... X2n

Molécula 3 Y3 X31 X32 X33 ... X3n

Molécula 4 ... ... ... ... ... ...
Molécula 5 Yn Xn1 Xn2 Xn3 ... Xnn

atividade biológica com relação a um ou mais alvos biológicos. Para realizar essa tarefa,
algoritmos de aprendizado de máquina podem ser utilizados, os quais serão apresentados
na próxima seção.

Nesta seção serão apresentados os fundamentos relacionados às diferentes aborda-
gens de aprendizado de máquina, aprendizado profundo de máquina, QSAR, descritores
moleculares, análise de similaridade e triagem virtual.

2.2 Aprendizado de Máquina

Aprendizado de máquina é uma técnica bastante utilizada para processar grandes
quantidades de dados e extrair visões (insights) valiosos. Os quatro principais paradigmas
de algoritmos de aprendizado de máquina encontrados na literatura são: supervisionado,
não-supervisionado, semi-supervisionado e por reforço (Figura 5) (MITCHELL, 1997).

Figura 5 – Tipos de aprendizado de máquina. Fonte: Autoria própria.

No aprendizado supervisionado, o algoritmo recebe dados de entrada e saída
rotulados, permitindo que seja estabelecido um “mapeamento” entre eles. Já no aprendizado
não-supervisionado, os dados de entrada não têm rótulos, e o algoritmo deve identificar
padrões ou estruturas por meio desses dados (MITCHELL, 1997).

No aprendizado semi-supervisionado, a maioria dos dados de entrada não tem
rótulos, mas pode haver alguns dados rotulados também. Assim, os dados rotulados são
usados para obter mais informações sobre os dados e, dessa forma, realizar o processo de
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aprendizado tendo como base os dados não rotulados. Isso permite que o algoritmo use dados
rotulados e não rotulados para realizar tarefas supervisionadas ou não supervisionadas
(BRUCE, 2001).

No aprendizado por reforço, os modelos são treinados para tomar decisões em um
ambiente incerto e complexo, recebendo recompensas ou penalidades com base nas ações
tomadas. A tentativa e erro é usada para maximizar as recompensas (GOODFELLOW;
BENGIO; COURVILLE, 2016).

Adicionalmente, o desenvolvimento e a implementação de métodos de aprendizado
de máquina podem auxiliar, consideravelmente, o processo de descoberta precoce de
candidatos a fármacos, especialmente para a doença de Alzheimer. Nas subseções seguintes,
abordaremos os algoritmos de aprendizado de máquina adotados neste trabalho: Random
Forest, SVM, Multilayer Perceptron e a biblioteca TensorFlow.

2.2.1 Random Forest

A Random Forest, ou Florestas Aleatórias em português, é um método de apren-
dizado supervisionado que pode ser usado para solucionar problemas de classificação e
regressão. É uma combinação de várias árvores de decisão, em que cada árvore é cons-
truída a partir de uma amostra aleatória (com reposição) do conjunto de dados original
(SVETNIK et al., 2003).

Florestas aleatórias são usadas para prever um valor ou propriedade de interesse:
regressão (contínuo) ou classificação (categórico). Em um problema de classificação, o
algoritmo gera várias árvores de decisão a partir do conjunto de dados de treinamento e a
saída é definida pela votação majoritária. Já em problemas de regressão, o valor final é
calculado como a média das previsões de cada árvore para cada observação (HORVATH;
ALDAHDOOH, 2017).

Dessa forma, nesse método, cada árvore é construída de forma independente, a
partir de uma amostra bootstrap dos dados originais. Assim, dois terços dos exemplos
originais são utilizados na construção de cada árvore (k-ésima). O conjunto restante é
usado para avaliação do erro (BREIMAN, 2001). Isso ajuda a reduzir a correlação entre
as árvores e melhora a capacidade de generalização do modelo.
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Figura 6 – Ilustração das árvores na florestas aleatórias. Fonte: www.researchgate.net.

O processo de construção das árvores inclui uma divisão aleatória dos dados em um
conjunto de treinamento e um conjunto de testes; a construção da árvore de classificação
a partir do conjunto de treinamento; e a comparação entre a classe prevista e a classe
verdadeira para cada elemento do conjunto de testes. Como exemplificado na figura 6, O
procedimento é repetido várias vezes para gerar as árvores de classificação. O resultado
final gerado contempla as taxas médias de erro sobre as árvores, assim como os respectivos
erros-padrão (BREIMAN, 2001).

Cada árvore é construída a partir de uma amostra aleatória dos dados originais
e uma seleção aleatória de um subconjunto de variáveis. A melhor divisão é usada para
dividir cada nó. As árvores são crescidas ao máximo, sem poda.

Destaca-se, que a taxa de erro de uma floresta de árvores de decisão depende
da robustez das árvores individuais na floresta e da correlação entre suas classificações
(BREIMAN, 2001).

2.2.2 Support Vector Machine

Support Vector Machine (SVM), ou Máquinas de Vetores Suporte em português, são
um algoritmo de aprendizado de máquina supervisionado utilizado para resolver problemas
de classificação e regressão. Esse algoritmo é capaz de realizar tanto classificação linear
quanto uma classificação não linear, graças a uma eficiente abordagem conhecida como
truque do kernel (JAMES et al., 2017).

Para o caso de classificação binária, o SVM busca encontrar o hiperplano de
separação ótimo que maximize a margem entre duas classes (JAMES et al., 2017). Em
outras palavras, o SVM procura a linha que melhor separa os dados em dois grupos, onde
cada grupo representa uma classe diferente (Figura 7) (GULIA; DHAIYA; ANSHUL,
2019). Esse hiperplano é construído utilizando técnicas de programação quadrática, e foi
proposto originalmente por Boser e Vapnik (SUSHKO, 2011).
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Figura 7 – Hiperplano ótimo separando os dados com a máxima margem. Os vetores-
suporte estão circulados em preto. Fonte: Baseado em (GULIA; DHAIYA;
ANSHUL, 2019).

Ressalta-se que o SVM não é limitado apenas a problemas de classificação binária,
podendo ser estendido para classificar em múltiplas classes. Além disso, ele pode ser usado
para problemas de regressão, em que o objetivo é encontrar a melhor linha ou superfície
para se ajustar aos dados. Dessa forma, em problemas de classificação com mais de duas
classes, o SVM pode ser aplicado de duas maneiras principais: um-contra-um (one-vs-one)
ou um-contra-todos (one-vs-all) (YANG et al., 2013).

No método um-contra-um, o SVM cria um modelo para cada par de classes e faz a
classificação a partir da votação da maioria dos modelos. Por exemplo, se houver 4 classes
(A, B, C e D), serão criados seis modelos: A vs. B, A vs. C, A vs. D, B vs. C, B vs. D e C
vs. D. Cada modelo irá gerar uma decisão de classificação e a classe mais votada será a
classe final do objeto (GONCALVES, 2008).

Já no método um-contra-todos, o SVM treina um modelo para cada classe em
relação a todas as outras. Por exemplo, se houver 4 classes (A, B, C e D), serão criados
quatro modelos: A vs. BCD, B vs. ACD, C vs. ABD e D vs. ABC. Cada modelo irá gerar
uma decisão de classificação e a classe com o maior valor de confiança será escolhida como
a classe final do objeto (FRIEDMAN, 1996; GONCALVES, 2008).

Destaca-se que ambos os métodos têm suas vantagens e desvantagens. No método
um-contra-um, há menos dados de treinamento para cada modelo, resultando em modelos
mais precisos e rápidos. Por outro lado, a construção de um grande número de modelos pode
ter alto custo computacional. No método um-contra-todos, há mais dados de treinamento
para cada modelo e isso pode resultar em modelos mais robustos. Porém, o desempenho
pode ser afetado quando as classes são desbalanceadas (FRIEDMAN, 1996).

Os pontos fortes do SVM incluem a capacidade de lidar com conjuntos de dados de
alta dimensionalidade e a habilidade de generalizar bem para novos dados, isto é, ele pode
fazer previsões precisas em conjuntos de dados que nunca viu antes. Entretanto, o SVM
pode ser sensível à escolha de parâmetros, como o tipo de kernel escolhido pode afetar
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significativamente o desempenho do algoritmo. Além disso, a largura de banda (conhecida
como parâmetro de regularização) também pode influenciar a qualidade das previsões. Por
isso, é necessário ajustar esses parâmetros para garantir que o SVM esteja funcionando da
melhor forma possível para o conjunto de dados em questão (GULIA; DHAIYA; ANSHUL,
2019).

2.2.3 Multilayer Perceptron

O Multilayer Perceptron (MLP) é uma rede neural artificial composta por camadas
de neurônios que processam informações de entrada e geram saídas por meio de um
processo de aprendizado supervisionado. Esse algoritmo tem sido aplicado com sucesso em
uma série de problemas difíceis, principalmente para problemas de classificação e regressão
(HAYKIN, 2009).

Desta forma, um MLP consiste em um conjunto de unidades sensoriais (nós fontes)
que constituem a camada de entrada; uma ou mais camadas ocultas (ou intermediárias) de
nós computacionais (neurônios); e uma camada de saída de nós computacionais (neurônios)
estas camadas podem ser exemplificadas na figura 8. Adicionalmente, se faz necessário
esclarecer alguns conceitos, dentre eles (GARDNER; DORLING, 1998):

Figura 8 – Camadas do Multilayer Perceptron. Fonte: https://www.nomidl.com/natural-
language-processing/what-is-multilayer-perceptron/

• neurônio: é a unidade básica de processamento do MLP. Ele recebe entradas ponde-
radas, as soma e aplica uma função de ativação para produzir uma saída.

• camada: é um conjunto de neurônios que processam informações de entrada, de
forma paralela. Existem três tipos de camadas no MLP: a camada de entrada, a
camada oculta e a camada de saída.
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• pesos: são valores atribuídos a cada entrada do neurônio, determinando a influência
que cada entrada terá na saída final. Os pesos são ajustados durante o processo de
treinamento da rede para minimizar o erro de predição.

• função de ativação: é aplicada à soma ponderada das entradas do neurônio para
determinar a saída do neurônio. Ela é responsável por introduzir não linearidade na
rede e permitir que ela aprenda relações complexas entre as entradas e as saídas.

• feedforward: é o processo de propagar as entradas da rede através das camadas até a
camada de saída, produzindo uma saída final.

• backpropagation: é o algoritmo de treinamento do MLP, que consiste em propagar
o erro de predição da saída da rede de volta através das camadas até a camada de
entrada, ajustando os pesos ao longo do caminho para minimizar o erro.

• overfitting: é um problema comum no treinamento do MLP, que ocorre quando a
rede se ajusta demais aos dados de treinamento e não generaliza bem para novos
dados. Isso pode ser evitado através de técnicas como a regularização e a validação
cruzada.

Portanto, o algoritmo geralmente mais utilizado para treinar uma rede MLP é o
de retropropagação (Backpropagation). Esse algoritmo foi desenvolvido por Rumelhart,
Hinton e Willians, em 1986, e é composto por quatro passos: inicialização, ativação, treinar
pesos e iteração. Esse algoritmo ajusta os pesos da rede para minimizar o erro entre a
saída real e a saída prevista, sendo que cada entrada de treinamento está associada a uma
saída desejada. Assim, o MLP pode relacionar o conhecimento a vários neurônios de saída
(HAYKIN, 2001).

Os pontos fortes do MLP incluem a sua flexibilidade (capacidade de lidar com
vários problemas, desde as tarefas de classificação binária até problemas de regressão e
classificação multiclasse), sua capacidade de lidar com problemas não-lineares, escalabi-
lidade (capacidade de lidar com grandes conjuntos de dados e alta dimensionalidade) e
sua habilidade de generalização (GERTRUDES et al., 2012). No entanto, o MLP pode
ser sensível à escolha do número de camadas ocultas, do número de neurônios em cada
camada e da taxa de aprendizado. A escolha adequada desses parâmetros é essencial para
obter um bom desempenho do MLP (QUADRI et al., 2022).

2.3 Aprendizado profundo de máquina: TensorFlow

O aprendizado profundo de máquina, conhecido como deep learning, é uma subárea
da Inteligência Artificial que se destaca por sua capacidade de aprender automaticamente
recursos complexos e robustos a partir de dados brutos, sem a necessidade de engenharia
de recursos. Atualmente, existem diversas bibliotecas utilizadas para o desenvolvimento
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de modelos de aprendizado profundo, como PyTorch, Theano, Keras, TensorFlow, dentre
outras (IQBAL et al., 2023).

TensorFlow é uma biblioteca de código aberto, desenvolvida pela equipe do Google
Brain (GOOGLE, 2023), que se tornou uma das mais populares, de acordo com as avaliações
com estrelas no GitHub. Ela é considerada a mais fácil de usar, fornecendo uma estrutura
flexível e robusta para criar, treinar e implantar modelos de aprendizado profundo em uma
variedade de domínios, desde a visão computacional até o processamento de linguagem
natural, a descoberta de novos medicamentos, etc (ALZUBAIDI et al., 2021).

TensorFlow é conhecido por seu modelo de programação orientado a grafos, sendo
possível representar as operações matemáticas como nós em um grafo direcionado, em que
os dados fluem através das arestas desse grafo, por isso a origem do nome TensorFlow. Essa
abordagem permite que os desenvolvedores definam a arquitetura de um modelo de maneira
abstrata e, em seguida, otimizem de forma eficiente a execução do modelo em hardware.
Além disso, a estrutura de grafos proporciona que o TensorFlow seja altamente escalável e
adequado para o treinamento distribuído em clusters de computadores (TENSORFLOW,
2023a).

Os modelos de aprendizado profundo, no TensorFlow, são construídos usando
camadas, as quais são blocos fundamentais que podem ser empilhados para criar arqui-
teturas complexas de redes neurais (Figura 9). Ele fornece várias camadas: densas (fully
connected), convolucionais, recorrentes, etc, as quais facilitam a construção de arquiteturas
personalizadas para as tarefas específicas, como classificação de imagens, tradução de
idiomas e detecção de objetos (ABADI et al., 2016).

Figura 9 – Ilustração do TensorFlow, disponível em www.tensorflow.org/.

Dentre as várias classes da biblioteca TensorFlow, destaca-se a “tf.keras.Sequential”
que permite criar modelos de redes neurais sequenciais de forma mais simples. Nela, as
camadas são empilhadas uma após a outra na ordem em que são adicionadas ao modelo,
tornando-a ideal para modelos lineares e simplificando a construção de arquiteturas de
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aprendizado profundo para tarefas como classificação, regressão e demais desafios de
aprendizado de máquina. Essa classe faz parte do módulo “tf.keras”, que é uma API
(Application Programming Interface) de alto nível para construir e treinar modelos de
aprendizado profundo em TensorFlow (TENSORFLOW, 2023b).

2.3.1 Métodos de seleção de hiperparâmetros

A maioria dos algoritmos de aprendizado de máquina contém, pelo menos, um
hiperparâmetro para controlar a complexidade do modelo. A escolha dos valores para os
hiperparâmetros influencia o desempenho do modelo, sendo ainda considerado um desafio
computacional (PEDREGOSA, 2016). A seleção dos hiperparâmetros é importante por
apresentar os seguintes efeitos (FEURER; HUTTER, 2019):

• reduzir o esforço humano necessário para aplicar métodos de aprendizado de máquina;

• melhorar o desempenho de algoritmos de aprendizado de máquina, adaptando-os ao
problema em questão.

• melhorar a reprodutibilidade dos estudos científicos. Isso facilita comparações justas,
uma vez que métodos diferentes só podem ser comparados de forma justa se todos
eles receberem o mesmo nível de ajuste para o problema em questão.

A Figura 10 ilustra as fases de otimização para alguns exemplos de hiperparâmetros,
de acordo com o tipo de algoritmo.

Figura 10 – Exemplos de cenários para seleção de hiperparâmetros. Fonte: Autoria própria.
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Logo, existem dois tipos de métodos de otimização de hiperparâmetros: pesquisa
manual e métodos de pesquisa automatizada. O primeiro, por testar manualmente os
conjuntos de hiperparâmetros, depende da intuição e experiência de usuários especialistas
que podem identificar os parâmetros importantes que têm um maior impacto nos resultados
e, assim, determinar a relação entre determinados parâmetros e os resultados finais por meio
das ferramentas de visualização. Isso requer que os usuários tenham mais conhecimento
profissional e experiência prática sendo, portanto, difícil de ser aplicado por usuários não
especialistas (WU et al., 2019). O segundo método visa superar as desvantagens da busca
manual, propondo algoritmos de busca automatizada, tais como busca em grade e busca
aleatória. Os algoritmos de busca automatizada serão detalhados nos tópicos a seguir.

2.3.1.1 Busca em Grade

A busca em grade2 é uma abordagem de busca de parâmetros que gera, exaustiva-
mente, candidatos a partir de uma grade de valores ideais. Essa abordagem analisa cada
combinação de valores possíveis de hiperparâmetros. Em seguida, avalia o desempenho de
acordo com uma métrica pré-definida pelo método de validação cruzada. Por último, são ob-
tidos valores de hiperparâmetros que alcançam o melhor desempenho (LIASHCHYNSKYI;
LIASHCHYNSKYI, 2019).

A busca em grade é basicamente uma lista de valores candidatos para cada hi-
perparâmetro. O nome “grade” vem do fato de que todos os candidatos possíveis dentro
de todos os hiperparâmetros necessários são combinados em uma espécie de grade. A
combinação que produz o melhor desempenho, preferencialmente avaliada em um conjunto
de validação é, então, selecionada (BERGSTRA; BENGIO, 2012).

Vale ressaltar que a eficiência deste algoritmo diminui conforme aumenta o número
de hiperparâmetros ou o aumento da faixa de valores a serem ajustados (BERGSTRA;
BENGIO, 2012). Portanto, o uso da pesquisa em grade é indicado a depender do número
de possibilidades de ajustes (LIASHCHYNSKYI; LIASHCHYNSKYI, 2019).

2.3.1.2 Busca Aleatória

O algoritmo de busca aleatória3 tenta combinações aleatórias a partir de uma gama
de valores, em que cada configuração é amostrada a partir de uma distribuição de possíveis
valores de parâmetro. Em comparação com o algoritmo de pesquisa em grade, a pesquisa
aleatória é mais eficiente em um espaço de alta dimensão, embora não seja confiável para
treinar modelos complexos (WU et al., 2019).

A seleção dos valores a serem avaliados é totalmente aleatória. Além da velocidade,
a pesquisa aleatória aproveita-se da aleatoriedade no caso de hiperparâmetros contínuos
2 Do inglês Grid Search.
3 Do inglês Random Search.
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que devem ser discretizados quando otimizados pela pesquisa em grade (BERGSTRA;
BENGIO, 2012).

Após a apresentação de algumas características importantes relacionadas com os
algoritmos empregados neste trabalho, a seguir, será detalhada a etapa de validação de
modelos de aprendizado de máquina.

2.3.2 Validação de modelos QSAR

Percebe-se na literatura que métodos para validação de modelos QSAR propõem
a divisão do conjunto de amostras em dois subconjuntos, com tamanhos diferentes:
geralmente, 70% e 30% (MAZZOLARI; VISTOLI, 2015), ou 80% e 20% (TROPSHA,
2010; TROPSHA et al., 2017). O conjunto maior é responsável por treinar (“conjunto de
treinamento”) e o menor por testar (“conjunto de teste”) o modelo. Essa subdivisão pode
ser realizada aleatoriamente, para cada um dos subconjuntos. Dessa forma, a depender da
quantidade de alvos e compostos, todos estarão presentes nos conjuntos de treinamento e
teste (JUNG, 2018).

A validação do modelo acontece por meio da “Validação Cruzada Aninhada”
(NCV)4, conforme ilustrado na Figura 11. Esse método executa dois laços (loops) aninhados,
sendo o primeiro responsável pela validação externa e executado logo após o loop interno ser
concluído. Esse loop interno fornece os melhores parâmetros e é conhecido como validação
interna (PARVANDEH et al., 2020).

4 Do inglês Nested Cross Validation.
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Figura 11 – Representação do método de validação cruzada aninhada, sendo k = 5. Fonte:
Autoria própria.

Dentre os diferentes tipos de validação interna, um método bastante empregado é o
da validação cruzada k-fold (TROPSHA, 2010; CHERKASOV et al., 2014). Ele subdivide
o conjunto de treinamento em k subconjuntos de tamanhos iguais. Em seguida, treina
o modelo em subconjuntos k-1 e, depois, testa o modelo no subconjunto restante. Esse
processo é repetido k vezes, alterando os elementos do conjunto de teste, possibilitando
que todos os k subconjuntos tenham feito parte do conjunto de teste (OJALA; GARRIGA,
2010).

2.3.3 Avaliação de modelos QSAR

A eficiência de um modelo QSAR, muitas vezes, é medida a partir da comparação
entre os valores reais e os previstos para a propriedade de interesse. A “matriz de confusão”
(Figura 12), por exemplo, é uma medida muito utilizada na solução de problemas de
classificação, podendo ser aplicada à classificação binária e também a problemas de
classificação multiclasse (KULKARNI; CHONG; BATARSEH, 2020).

Essa matriz é uma tabulação cruzada dos rótulos observados: reais e os previstos.
Os elementos diagonais da matriz de confusão indicam previsões corretas, enquanto os
fora da diagonal representam previsões incorretas (JAMES et al., 2017).

A saída “VN” significa Verdadeiro Negativo e indica o número de exemplos negativos
classificados com precisão. Do mesmo modo, “VP” significa Verdadeiro Positivo, que indica
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o número de exemplos positivos classificados com precisão. O termo “FP” mostra um valor
falso positivo, isto é, o número de exemplos negativos reais classificados como positivos
e “FN” significa um valor falso negativo que é o número de exemplos positivos reais
classificados como negativos (KULKARNI; CHONG; BATARSEH, 2020).

Figura 12 – Representação básica de Matriz de Confusão. Fonte: Autoria própria.

As células destacadas em azul claro na Figura 12 representam os casos em que as
classificações foram previstas corretamente, enquanto que os elementos fora dessa diagonal
foram aqueles rotulados incorretamente pelo modelo.

Com os valores da matriz de confusão obtidos, outras métricas podem ser calculadas
para medir o desempenho do modelo. Dentre elas, destacam-se:

• acurácia: é a proporção de instâncias que são classificadas corretamente entre todas
as amostras do conjunto de dados (HORVATH; ALDAHDOOH, 2017). Dito de outra
forma, se refere ao quão frequente o classificador está correto.

acuracia = total de acertos

total de elementos da amostra
= V P + V N

(V P + FN) + (V N + FP ) (2.2)

Para isso, considera-se:

– VP (Verdadeiro Positivo). Exemplificando: se um indivíduo testou positivo para
a COVID-19 e ele tem essa doença, então é chamado de verdadeiro positivo.

– VN (Verdadeiro Negativo). Seguindo o mesmo exemplo anterior, se o resultado
do teste para a COVID-19 for negativo e o indivíduo não tem essa doença,
então é classificado como verdadeiro negativo.

– FN (Falso Negativo). Se o resultado do teste da COVID-19 for negativo e o
indivíduo estiver com a doença, então é chamado de falso negativo.
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– FP (Falso Positivo). Se o resultado do teste para a COVID-19 for positivo para
o indivíduo que não tem essa doença, então é chamado de falso positivo. A
equação 2.2 apresenta o cálculo de acurácia.

• precisão: é a relação entre o verdadeiro positivo e o número total de positivos
previstos. Portanto, é a porcentagem do conjunto classificado corretamente. Isto
é, daqueles compostos que foram classificados como corretos, quantos efetivamente
estavam corretos (MAZZOLARI; VISTOLI, 2015; HORVATH; ALDAHDOOH, 2017).

precisao = V P

(V P + FP ) (2.3)

• sensibilidade (recall): é a proporção de previsões positivas corretas em comparação
ao total de positivos da amostra, isto é, a capacidade do modelo em identificar todas
as instâncias de interesse (MAZZOLARI; VISTOLI, 2015). Nessa medida, os falsos
negativos são considerados mais prejudiciais que os falsos positivos.

sensibilidade = verdadeiros positivos

total de positivos da amostra
= V P

(V P + FN) (2.4)

• f-score (F-measure): é obtido a partir de uma média ponderada entre a sensibilidade
e a precisão. O resultado dessa média está no intervalo entre [0, 1]. Quanto mais
próximo de 1, melhor será o desempenho do modelo.

f − measure = (1 + β ∗ precisao ∗ sensibilidade)
β2 ∗ precisao + sensibilidade

=
(1 + β) ∗ V N

V N+F P
∗ V P

V P +F N

β2 ∗ V N
V N+F P

+ V P
V P +F N

(2.5)

• especificidade: é a proporção de previsões negativas corretas em comparação ao
número total de instâncias negativas (MAZZOLARI; VISTOLI, 2015).

especificidade = verdadeiros negativos

total de negativos da amostra
= V N

(V N + FN) (2.6)

• coeficiente Kappa: é uma medida responsável por medir o grau de concordância,
ou discordância, entre o que foi previsto e observado na classificação, variando entre
0 e 1 (VIEIRA; SOUSA, 2010). A Tabela 2 ilustra o cálculo do coeficiente Kappa,
tendo como ponto de partida um problema de duas classes.

Tabela 2 – Matriz de confusão para um problema de duas classes, sendo N = o número
total de classes, C1 e C2 indicam os rótulos relacionados com as classes 1 e 2,
respectivamente.

Rótulo previsto

Rótulo correto

C1 C2 Total
C1 a b a + b = C1corr

C2 c d c + d = C2corr

Total a + c = C1pred b + d = C2pred N
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O coeficiente Kappa é definido por:

Kappa = N ∗ (a + e + i) − (C1corr ∗ C1pred + C2corr ∗ C2pred)
N2 − (C1corr ∗ C1pred + C2corr ∗ C2pred) (2.7)

podendo ser generalizado para as classes m:

Kappa = N
∑m

i=1 CMii − ∑m
i=1 CicorrCipred

N2 − ∑m
i=1 CicorrCipred

(2.8)

em que CMii representam os elementos diagonais da matriz de confusão (TALLON-
BALLESTEROS; RIQUELME, 2014). O resultado do coeficiente Kappa é interpre-
tado conforme consta na Tabela 3.

Tabela 3 – Interpretação dos valores do coeficiente de Kappa

Valor Kappa >0,20 0,21 - 0,40 0,41 - 0,60 0,61 - 0,80 0,81 - 1,00
Qualidade do
classificador ruim fraca boa muito boa excelente

• área sob a curva (AUC)5: é uma medida que permite melhor visualização do
desempenho do modelo. O espaço ROC (Receiver Operating Characteristic) representa
os tradeoffs relativos entre benefícios (verdadeiros positivos) e custos (falsos positivos).
Quanto mais próximo de 1, melhor será o desempenho do modelo, mas quanto mais
próximo da diagonal, é possível inferir uma previsão aleatória (em torno de 0,5)
(FAWCETT, 2006).

2.3.4 Domínio de aplicabilidade

A definição do domínio de aplicabilidade (AD)6 de um modelo é uma etapa
fundamental para maximizar a qualidade do próprio modelo (BOBROWSKI et al., 2020).
Um modelo produzirá previsões confiáveis quando suas hipóteses forem válidas e previsões
não confiáveis quando forem violadas. Portanto, é importante definir o espaço onde as
previsões do modelo são confiáveis (BASKIN; KIREEVA; VARNEK, 2010; MAZZOLARI;
VISTOLI, 2015). Assim, o objetivo do AD é avaliar a precisão da previsão (ou confiabilidade)
do modelo de acordo com a avaliação das moléculas e sua relação com o “domínio” do
modelo (BASKIN; KIREEVA; VARNEK, 2010).

Neste contexto, a análise de similaridade entre os compostos do conjunto de
treinamento é considerada uma abordagem para determinação da estimativa do domínio
de aplicabilidade. Um composto terá uma previsão confiável se for muito semelhante com
aqueles utilizados pelo algoritmo na fase de aprendizagem (BOBROWSKI et al., 2020).
5 Do inglês Area Under The Curve.
6 Do inglês Applicability Domain.
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A similaridade pode ser calculada em conformidade com critérios e o desempenho do
modelo é impresso em relação a toda a gama de similaridade no conjunto de treinamento
(MAZZOLARI; VISTOLI, 2015).

A confiabilidade não avaliada das previsões é o principal problema que restringe a
aplicação prática dos modelos QSAR. Isto é, os modelos computacionais que têm uma
boa precisão de predição para os compostos que foram usados para construir e validar o
modelo não têm garantia de um desempenho igualmente bom para compostos diferentes
(novos). Logo, não existe um modelo computacional universal que funcione igualmente
bem em todo o espaço químico (SUSHKO, 2011).

Desta forma, a falha em especificar a área de aplicabilidade do modelo (subespaço
químico), determinando onde o modelo é válido e é suscetível em fornecer previsões
precisas, é o fator limitante para a aplicação prática de modelos computacionais. Portanto,
o problema da incerteza na precisão e na confiabilidade das previsões é abordado em uma
área emergente de pesquisa, que é o domínio de aplicabilidade (SUSHKO, 2011). A Figura
13 ilustra um exemplo do problema relacionado ao AD.

Figura 13 – Exemplo ilustrativo para o problema do domínio de aplicabilidade. Fonte:
Autoria própria.

Na região cinza, os dados são aproximados em um modelo linear (linha vermelha).
Porém, fora dessa região, a aproximação não é válida. Portanto, o domínio de aplicabilidade
do modelo linear está definido na região cinza (intervalo [-1, 1]) (SUSHKO, 2011).

Após a descrição das etapas envolvidas na construção e validação dos modelos de
QSAR, o próximo passo do trabalho envolve a aplicação destes modelos como filtros nos
estudos de triagem virtual, a qual é uma das técnicas empregadas na identificação de
novos candidatos a fármacos e que será descrita em mais detalhes a seguir.
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2.4 Triagem Virtual

A triagem virtual é uma abordagem computacional usada para rastrear grandes
bases de dados contendo moléculas pequenas em busca de substâncias com propriedades
química/biológicas desejadas e que podem ser testadas experimentalmente (CARPENTER
et al., 2018; NEVES et al., 2018).

A triagem virtual realiza as buscas por meio de simulação computacional (in silico)
de centenas/milhares de compostos em estruturas de alvos biológicos, aumentando o
rendimento e sucesso na descoberta de potenciais candidatos a fármacos. Desta forma, o
aprendizado de máquina é uma poderosa ferramenta para auxiliar o processo de triagem
virtual e, consequentemente, a descoberta de compostos como potenciais candidatos a
fármacos (CARPENTER et al., 2018; CARPENTER; HUANG, 2018). A estratégia de
triagem virtual pode ser dividida em duas categorias (Figura 14): métodos baseados no
ligante (LBVS)7 e técnicas baseadas na estrutura do alvo (SBVS)8 (KUMAR; KRISHNA;
SIDDIQI, 2015).

Figura 14 – Diferentes abordagens empregadas em estudos de Triagem Virtual. Fonte:
Autoria própria.

É importante ressaltar que a finalidade da triagem virtual “não é substituir ensaios
in vitro ou in vivo, mas acelerar o processo de descoberta, reduzir o número de candidatos
a serem testados experimentalmente e racionalizar sua escolha, proporcionando economia
de tempo, custo, recursos e mão-de-obra” (NEVES et al., 2018).

7 Do inglês Ligand-based Virtual Screening.
8 Do inglês Structure-based Virtual Screening.
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Dentre as diferentes estratégias para execução da triagem virtual, modelos QSAR
podem ser utilizados como filtros nas etapas iniciais da VS. Em geral, os modelos QSAR são
usados para prever a propriedade biológica de novos compostos e podem ser considerados
ferramentas valiosas devido ao seu alto e rápido rendimento, além de boa taxa de acerto
(CARPENTER et al., 2018; NEVES et al., 2018).

Cabe ainda ressaltar que as triagens virtuais baseadas no aprendizado de máquina
“estão entre as técnicas menos caras em termos de computação e tiveram um sucesso
significativo” nas últimas décadas (CARPENTER et al., 2018). Elas incluem “a seleção de
um conjunto de compostos filtrados, constituídos por agentes ativos e inativos conhecidos.
Após o treinamento do modelo, ele é validado e, se suficientemente preciso, usado em
bancos de dados não vistos anteriormente podem ser usados para rastrear novos compostos
com a desejada atividade frente ao alvo de interesse” (CARPENTER; HUANG, 2018).

Alguns autores (CARPENTER et al., 2018) propõem o seguinte fluxo de trabalho
ao empregar aprendizado de máquina em estudos de triagem virtual: ‘“uma vez construído
e considerado satisfatório um modelo de aprendizado de máquina (modelo treinado e
validado), ele pode ser usado para conduzir uma simulação VS em bibliotecas quimio-
genômicas extremamente grandes. Os compostos com maior pontuação são chamados
de hits (acertos) e estão sujeitos a testes in vitro para verificar se apresentam atividade
biológica desejada. O rendimento destes testes é muito superior ao de uma triagem normal
de alto rendimento, uma vez que o modelo obtido via aprendizado de máquina já previu a
interação composto-alvo biológico. A partir deste ponto, os compostos mais promissores
(chamados leads - derivações) podem ser desenvolvidos e testados, esperançosamente se
tornando fármacos” (CARPENTER et al., 2018).

Existem diversos algoritmos/classificadores que podem ser aplicados na triagem
virtual. Alguns exemplos de aplicação do aprendizado de máquina na triagem virtual
incluem:

(a) descoberta de fármacos para a doença de Alzheimer (CARPENTER; HUANG,
2018). Algoritmos de aprendizado de máquina usados: Naïve Bayes; k-Nearest Neighbors;
Support Vector Machines; Artificial Neural Networks; Ensemble Methods.

(b) previsão de interação proteína-composto (CHEN et al., 2018). Algoritmos de
aprendizado de máquina usados: algoritmos baseados em similaridade (métodos do vizinho
mais próximo, modelos locais bipartidos, métodos de fatoração da matriz); algoritmos
baseados em vetores de características (Florestas Aleatórias).

(c) identificação de potenciais inibidores da proteína-tirosina fosfatase 1B (PTP1B)
- um alvo terapêutico para diabetes tipo 2 e obesidade. Algoritmos de aprendizado de
máquina utilizados: naïve Bayesian, random forest, support vector machine e k-nearest
neighbor (CHAMJANGALI, 2020).
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Além destes, redes neurais artificiais foram usadas para a previsão de inibidores de
protease para o vírus HIV9 (RAO et al., 2009), para previsão da permeabilidade à barreira
hematoencefálica e ligação à soroalbumina (KARELSON et al., 2008), para previsão de
inibidores da Furina, capazes de evitar a maturação das toxinas produzidas pelo Bacillus
anthracis, (WORACHARTCHEEWAN et al., 2009) e para a geração de um modelo de
QSAR usado na previsão de toxicidade de pirril-aril-sulfonas, utilizadas como inibidores
não nucleosídicos de transcriptase reversa para o tratamento da AIDS (CHAMJANGALI,
2020).

Considerando toda a contextualização e fundamentos teóricos abordados até aqui,
a condução de uma triagem virtual se faz necessária para aumentar o número de potenciais
candidatos a fármacos, por meio de algoritmos de aprendizado de máquina. Esse enfoque
computacional representa um avanço fundamental na pesquisa da doença de Alzheimer,
pois a demanda por novos tratamentos eficazes e preventivos é iminente, dada a crescente
prevalência da doença em uma população envelhecida.

9 Do inglês Human Immunodeficiency Virus
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3 TRABALHOS RELACIONADOS

Nesta seção serão apresentados o estado arte sobre o tema de pesquisa, além de
outras aplicações técnicas de modelos de aprendizado de máquina.

3.1 Estado da arte

Após realizar uma consulta na literatura, um conjunto de artigos foram encontrados,
os quais fornecem diferentes abordagens para o desenvolvimento de modelos QSAR.
Dentre elas, destacam-se as técnicas de aprendizado de máquina supervisionado e não
supervisionado, aprendizado profundo, rede neural convolucional, técnicas de aprendizado
de transferência e aprendizado de máquina baseado em grafos (SAKAI et al., 2021;
GUPTA et al., 2021). Além disso, esses artigos exploram diferentes conjuntos de descritores
moleculares para a predição da atividade de inibidores da AChE para a doença de Alzheimer
(MOUCHLIS et al., 2020).

A AChE é uma enzima que desempenha um papel importante para a degradação da
acetilcolina no cérebro, afetando diretamente a função cognitiva. Por isso, o desenvolvimento
de novos inibidores da AChE é uma área de interesse na pesquisa de novos fármacos para
o tratamento da doença de Alzheimer (BAO et al., 2023).

Alguns autores ressaltam que uma abordagem híbrida pode ser uma estratégia
eficaz para a identificação de compostos naturais com atividade inibitória contra múltiplos
alvos na doença de Alzheimer. Além disso, a combinação de abordagens de modelagem
molecular e QSAR pode ser útil para a seleção e priorização de compostos para avaliação
experimental adicional (DAS; CHAKRABORTY; BASUCORRESPONDING, 2019).

Neste estudo de Dhamodharan e Mohan (2022), foram desenvolvidos modelos de
aprendizado de máquina para prever a eficácia de inibidores da AChE e BACE1 no trata-
mento da doença de Alzheimer. Foram usados diversos descritores moleculares e métodos
de aprendizado, obtendo modelos estatisticamente significativos. Esses modelos podem ser
usados no projeto de novos tratamentos para a doença de Alzheimer (DHAMODHARAN;
MOHAN, 2022).

Após as leituras realizadas, percebeu-se que uma abordagem promissora para
tratar a doença de Alzheimer é a inibição da AChE, pois ela é uma das principais
proteínas envolvidas na degradação da acetilcolina, um neurotransmissor crucial para a
função cognitiva e sua inibição pode, potencialmente, melhorar os sintomas da doença de
Alzheimer, como a perda de memória e a deterioração cognitiva. A predição da atividade
de inibidores da AChE é uma tarefa importante para o desenvolvimento de novos fármacos
para a doença de Alzheimer (DAI et al., 2022).
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Além disso, uma técnica muito utilizada para a predição da atividade de compostos
químicos é o uso de modelos QSAR, pois correlacionam a estrutura molecular de um
composto com sua atividade biológica. O principal desafio é construir modelos QSAR
precisos e confiáveis, tendo em vista a complexidade da relação entre a estrutura molecular e
a atividade biológica. Nos últimos anos, houve um aumento considerável de modelos QSAR,
combinando diferentes abordagens de aprendizado de máquina e descritores moleculares
para melhorar a precisão das predições (BAO et al., 2023; DAI et al., 2022).

Por exemplo, alguns estudos combinaram a abordagem de aprendizado de máquina
Random Forest com diferentes tipos de descritores moleculares para a predição da atividade
de inibidores dda AChE e BACE1. Neste estudo (HU et al., 2019), os autores concluíram
que Random Forest é o melhor modelo de aprendizado para a previsão de drogas e alvos
de Alzheimer.

Outra abordagem promissora para a construção de modelos QSAR é a utilização de
redes neurais artificiais (ANNs - Artificial Neural Networks) combinadas com descritores
moleculares. As ANNs são capazes de aprender relações complexas entre descritores
moleculares e atividade biológica, e várias estratégias foram propostas para a construção
de modelos QSAR baseados em ANNs (DOBCHEV; KARELSON, 2016; CHEIRDARIS,
2020; DHAMODHARAN; MOHAN, 2022).

Por último, destaca-se que a construção de modelos QSAR para a predição da
atividade de inibidores da AChE para a doença de Alzheimer é um tema de pesquisa
em constante evolução, e diferentes abordagens de aprendizado de máquina e descritores
moleculares estão sendo explorados para melhorar a precisão das predições. Acredita-se
que esses modelos sejam úteis para o desenvolvimento de novos fármacos para essa doença,
contribuindo com o aceleramento do processo de descoberta de medicamentos e reduzindo
os custos associados.

3.2 Abordagens utilizadas para o desenvolvimento de modelos QSAR

A abordagem de QSAR é amplamente utilizada para a descoberta de medicamentos
e no desenvolvimento de fármacos para diversas doenças, incluindo a doença de Alzheimer.
Para melhorar a precisão e robustez dos modelos QSAR na predição da atividade de
inibidores da AChE para essa condição, abordagens combinadas têm sido exploradas,
combinando diferentes métodos de aprendizado de máquina e descritores moleculares.
Essas abordagens objetivam aproveitar as vantagens de cada componente para fornecer re-
sultados mais confiáveis e abrangentes (TODESCHINI; CONSONNI, 2000; GOLBRAIKH;
TROPSHA, 2003).

A combinação de diferentes tipos de descritores moleculares é uma das abordagens
mais comuns usadas no desenvolvimento de modelos QSAR. Os descritores moleculares são
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representações numéricas que capturam características estruturais das moléculas, como
informações topológicas, físico-químicas e de conectividade. Ao combinar descritores 2D e
3D, por exemplo, torna-se possível contemplar uma variedade de informações moleculares
importantes para a atividade inibitória da AChE. Essa abordagem permite melhorar a
capacidade preditiva dos modelos (FARA; A.L.; OPREA, 2019).

Outra estratégia adotada em modelos QSAR é a junção de diferentes algoritmos
de aprendizado de máquina e aprendizado profundo. Esses algoritmos podem incluir
regressão linear, redes neurais, métodos de aprendizado profundo e outros. Cada algoritmo
possui suas próprias capacidades e limitações na captura de relações complexas entre os
descritores moleculares e a atividade inibitória da AChE. Ao combinar esses algoritmos
em um modelo, é possível aproveitar suas vantagens individuais e obter uma previsão mais
precisa e confiável (CARPENTER; HUANG, 2018).

Além disso, a validação cruzada e a avaliação de desempenho realizadas de modo
adequado são importantes no desenvolvimento de modelos QSAR. A divisão adequada
dos conjuntos de treinamento e teste, juntamente com técnicas como validação externa e
bootstrapping, permitem avaliar a robustez e a generalização dos modelos. Essas etapas
são fundamentais para garantir que os modelos QSAR sejam confiáveis e possam fornecer
previsões precisas e úteis (PANOV; DZEROSKI, 2007; PARVANDEH et al., 2020).

Essas abordagens têm o potencial de impulsionar a descoberta e o desenvolvimento
de novos compostos terapêuticos com maior eficácia e se mostram promissoras na luta
contra essa doença neurodegenerativa.

3.3 Outras aplicações

Dada a rápida disseminação da COVID-19 e sua alta mortalidade, torna-se urgente
descobrir medicamentos específicos para combater o vírus SARS-CoV-2 (GUY et al., 2020).
Nesse contexto, técnicas de aprendizado de máquina têm sido utilizadas para apoiar a
triagem virtual na busca por inibidores de alvos moleculares relacionados com SARS-CoV-2.
Uma dessas proteínas, a protease Mpro, é essencial dentro do ciclo viral, ou seja, seus
inibidores poderiam bloquear a replicação viral (TEJERA et al., 2020).

Uma busca na literatura revelou algumas aplicações de técnicas de aprendizado
de máquina no contexto da COVID-19. Dentre elas, destaca-se o uso de aprendizado
de máquina em imagens médicas para diagnosticar pneumonia relacionada à COVID-19.
Vale ressaltar que os modelos construídos e suas avaliações tiveram um alto risco de viés,
ocasionados em virtude de relatórios e uma combinação inadequada de pacientes com
e sem COVID-19. No entanto, nenhum dos 145 modelos de previsão construídos foram
recomendados para serem usados na prática (WYNANTS et al., 2020).

Em outro estudo, ferramentas computacionais de biologia estrutural e aprendizado
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de máquina (rede neural artificial) foram utilizadas para prever a presença de antígenos e
identificar potenciais epítopos de células T. epítopo ou determinante antigênico é a menor
porção de antígeno com potencial de gerar a resposta imune. O referido estudo também
fez uso de algoritmo de acoplamento (docking) computacional para estimar a superfície de
SARS-CoV-2 que interage com seu receptor humano conhecido (ACE2) (FAST; CHEN,
2020).

Algoritmos baseados no aprendizado de máquina também foram utilizados para
melhorar identificação de casos de COVID-19, usando uma pesquisa na web baseada em
telefone celular, capturando as manifestações mais comuns da doença (sinais e sintomas),
juntamente com o histórico básico de viagens dos usuários (RAO; VAZQUEZ, 2020).

Por último, a combinação do algoritmo de aprendizado de máquina supervisionado
(árvores de decisão) com processamento digital de sinais foi usada para realizar análises
de genoma. O método proposto identifica uma assinatura genômica do vírus responsável
pela COVID-19 e a usa, em conjunto com uma abordagem livre de alinhamento baseada
no aprendizado de máquina, para uma classificação ultrarrápida, escalonável e altamente
precisa de genomas inteiros do vírus SARS-CoV-2 (RANDHAWA et al., 2020).
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4 PROPOSTA DE SOLUÇÃO: TRIAGEM VIRTUAL UTILIZANDO CONSENSO
ENTRE MODELOS QSAR E BUSCA POR SIMILARIDADE

Neste trabalho, uma pesquisa aplicada foi realizada, pois “objetiva gerar conheci-
mentos para aplicação prática dirigidos à solução de problemas específicos” (GIL, 2017).
Além disso, foi utilizada uma abordagem mista quanti-qualitativa, ou seja, foram realizadas
pesquisas que combinam elementos de abordagens de pesquisa qualitativa e quantitativa
com o propósito de ampliar e aprofundar o entendimento sobre os temas de pesquisa e a
confirmação/validação dos resultados (JOHNSON; ONWUEGBUZIE; TURNER, 2007).

A pesquisa também tem um caráter exploratório, pois “proporciona maior famili-
aridade com o problema, com vistas a torná-lo mais explícito ou a constituir hipóteses,
tendo como principal objetivo o aprimoramento de ideias ou a descoberta de intuições”
(GIL, 2017). Desta forma, as seguintes etapas serão realizadas ao longo deste trabalho:

• pesquisa bibliográfica, visando compreender os conceitos necessários para realização
do estudo, assim como identificar na literatura os trabalhos correlatos e refinar a
metodologia proposta.

• pesquisa experimental, realizando uma investigação empírica na qual o pesquisador
manipula e controla variáveis independentes e observa as variações que tal manipula-
ção e controle produzem em variáveis dependentes. Variável é um valor que pode ser
dado por quantidade, qualidade, característica, magnitude, variando em cada caso
em particular. Variável independente é aquela que influencia, determina ou afeta a
dependente. Variável dependente é aquela que vai ser afetada pela independente.

• estudo de caso, a ser realizado empregando bases de dados contendo substâncias
químicas e dados biológicos, assim como algoritmos de aprendizado de máquina e
aprendizado profundo a fim de identificar potenciais candidatos a fármacos para o
tratamento da doença de Alzheimer, assim como avaliar o desempenho de diversas
técnicas de aprendizado de máquina.

4.1 Estruturação da metodologia empregada

A metodologia proposta para realização deste trabalho foi estruturada em quatro
etapas, como ilustra a Figura 15.
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Figura 15 – Principais etapas envolvidas na metodologia empregada neste trabalho. Fonte:
Adaptado de (TROPSHA et al., 2017)

4.1.1 Etapa 01 - Preparação dos dados

4.1.1.1 Definição do alvo químico / biológico / molecular

O alvo biológico definido foi a enzima Acetilcolinesterase, também conhecida como
AChE. A AChE é uma enzima envolvida na degradação do neurotransmissor acetilcolina,
desempenhando um papel fundamental na transmissão de sinais nervosos no sistema
nervoso (DHAMODHARAN; MOHAN, 2022).

4.1.1.2 Organização do conjunto de dados (conjunto de dados original)

Para a construção dos modelos (conjunto de treinamento e testes, e a validação
externa) foram utilizadas as seguintes bases de dados:

• ChEMBL (www.ebi.ac.uk/chembl), base utilizada para seleção das amostras (com-
postos químicos).

• DUD-E, dude.docking.org/targets/aces), base utilizada para obtenção de compostos
de referência para a similaridade.

• PubChem (pubchem.ncbi.nlm.nih.gov/rest/pug), base utilizada para selecionar com-
postos para a etapa de triagem virtual.

4.1.1.3 Avaliação da acurácia do conjunto de dados (conjunto de dados acurado)

Para garantir a acurácia dos dados, adotou-se o fluxo proposto por Tropsha e
colaboradores (FOURCHES; MURATOV; TROPSHA, 2016):

https://www.ebi.ac.uk/chembl/
https://dude.docking.org/targets/aces
https://pubchem.ncbi.nlm.nih.gov/rest/pug
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• passo 1: Preparo, de um ponto de vista químico, do conjunto de dados, que segue
um protocolo previamente estabelecido e permite a identificação e correção de erros
nas estruturas químicas (FOURCHES; MURATOV; TROPSHA, 2010).

• passo 2: Duplicatas identificadas (compostos repetidos) são analisadas e removidas.

• passo 3: Realiza-se uma análise da variabilidade experimental intra e interlaboratorial.

• passo 4: Exclusão de fontes de dados não confiáveis, ou seja, dados com alta variação
nos valores dos ensaios.

• passo 5: Detecção e análise dos “cliffs” relacionados aos dados de atividade biológica
(MAGGIORA, 2006).

Todas as estruturas químicas e informações biológicas correspondentes foram pa-
dronizadas usando o Standardizer v.20.8.0 (ChemAxon, Budapest, Hungary, disponível em:
www.chemaxon.com) (ALVES et al., 2021). A partir desta ferramenta, compostos inorgâ-
nicos, contra-íons, metais, compostos organometálicos e misturas foram removidos. Além
disso, quimiotipos específicos, como anéis aromáticos e grupos nitro, foram normalizados.
Também foram excluídas as duplicatas da seguinte forma: (i) se as duplicatas tivessem
atividade biológica diferente, ambas as entradas foram excluídas; e (ii) se os resultados
relatados para as duplicatas fossem os mesmos, uma entrada era mantida no conjunto de
dados e a outra era excluída (ALVES et al., 2021).

4.1.1.4 Cálculo dos descritores (variáveis/atributos) moleculares

Três tipos de estratégias computacionais foram utilizadas para a geração de descri-
tores 2D para as amostras (compostos) do conjunto de dados:

• função Fingerprints de Harry Morgan (FIGUERAS, 1993);

• software para geração de descritores SiRMS (Simplex Representation of Molecular
Structure), disponível em www.qsar4u.com/pages/sirms.php

• biblioteca RDKit (rdkit.Chem.MoleculeDescriptors.MolecularDescriptorCalculator),
disponível em www.rdkit.org/docs/source/rdkit.ML.Descriptors.MoleculeDescriptors.html.

4.1.2 Etapa 02 - Construção dos modelos QSAR

4.1.2.1 Conjuntos de dados

Os conjuntos de dados utilizados neste trabalho foram compostos de descritores
gerados por diferentes ferramentas (Morgan, SiRMS e RDKit). O bloco Y (variável
dependente) é formado por dados biológicos de uma coleção de compostos, ativos e
inativos, enquanto que o bloco X (variáveis independentes) é composto por um conjunto

http://www.chemaxon.com
http://www.qsar4u.com/pages/sirms.php
https://www.rdkit.org/docs/source/rdkit.ML.Descriptors.MoleculeDescriptors.html
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de descritores moleculares referentes a cada estratégia de obtenção. A Figura 16 ilustra
a combinação entre os algoritmos de aprendizado de máquina e os tipos de descritores
selecionados para análise.

Figura 16 – Representação esquemática ilustrando o conjunto de dados usado para cons-
trução dos modelos (SVM, MLP, RF e TensorFlow), combinados com os
descritores calculados (RDKit, SiRMS e Morgan). Fonte: Autoria própria.

4.1.2.2 Divisão do conjunto de dados em conjuntos de treinamento e teste

A divisão dos conjuntos de dados (treinamento e testes) e de avaliação externa foi
realizada selecionando aleatoriamente as instâncias e aplicando o método de validação
cruzada 5-fold (TROPSHA et al., 2017), levando em consideração as seguintes etapas:

• o conjunto de dados total com atividade experimental definida foi aleatoriamente
dividido empregando a técnica de bootstrap em cinco subgrupos de tamanhos iguais;

• em seguida, um destes subgrupos (20% de todos os compostos) foi definido como
conjunto de validação externa;

• os quatro conjuntos restantes formaram o conjunto de treinamento (80% de todo o
conjunto de dados);

• esse procedimento foi repetido cinco vezes, permitindo que cada um dos cinco
subconjuntos fosse usado como conjunto de validação externa;

• é importante ressaltar que o conjunto de validação externa nunca foi usado na
construção e/ou seleção dos modelos;

• na validação externa, através dos 20% dos dados do conjunto original, foi avaliado o
desempenho dos modelos treinados e testados. Para tanto, foi utilizado a validação
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cruzada estratificada com a mesma parametrização utilizada para o treinamento e
testes, conforme ilustrado na Figura 17.

Figura 17 – Etapas empregadas no desenvolvimento dos modelos de aprendizado de má-
quina. Fonte: Autoria própria.

4.1.2.3 Construção dos modelos usando os conjuntos de treinamento

O esquema geral utilizado para construção dos modelos combinou três algoritmos
supervisionados (SVM, MLP e RF) e um algoritmo de aprendizado profundo utilizando a
biblioteca TensorFlow, com os quatro tipos de descritores moleculares obtidos nas etapas
prévias (Figura 16). Os modelos foram construídos usando a linguagem Python 3 e as
seguintes bibliotecas foram utilizadas (PEDREGOSA et al., 2011):

• sklearn.ensemble.RandomForestClassifier (para RF), disponível em: scikit-learn.org;

• scikit-learn 0.23.2 (para SVM), disponível em: scikit-learn.org.

Nesta etapa, foi utilizada uma técnica para otimização de hiperparâmetros para
fins de comparação: a Busca aleatória: sklearn.model_selection.RandomizedSearchCV,
disponível em: scikit-learn.org.

4.1.2.4 Validação dos modelos usando conjuntos de teste

Para avaliação do poder de generalização dos modelos, a técnica de validação
cruzada (CV) 5-fold foi utilizada com base na biblioteca sklearn.model_selection com
o método StratifiedKFold e o parâmetro de número de divisão igual a 5.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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O conjunto de dados total com atividade experimental definida foi dividido em cinco
subgrupos de tamanhos iguais. Então, um destes subgrupos (20% de todos os compostos)
foi definido como conjunto de validação externa e os quatro conjuntos restantes formaram
o conjunto de treinamento (80% de todo o conjunto de dados).

Esse procedimento foi repetido cinco vezes, permitindo que cada um dos cinco
subconjuntos fosse usado como conjunto de validação externa. Os modelos foram gerados
usando apenas o conjunto de treinamento. É importante enfatizar que o conjunto de
validação externa nunca foi empregado para geração e/ou seleção dos modelos. Cada
conjunto de modelagem é dividido em vários conjuntos de treinamento e teste; então os
modelos são gerados usando compostos de cada conjunto de treinamento e aplicados aos
conjuntos-teste para avaliar a robustez e a capacidade preditiva dos modelos. A Figura 18
ilustra o processo para execução da validação cruzada.

Figura 18 – Processo empregado na etapa de validação cruzada. Fonte: Autoria própria.

4.1.2.5 Seleção dos modelos para validação externa

Nessa etapa, os modelos foram avaliados de acordo com as seguintes métricas:

• acurácia (ACC);

• sensibilidade (Se) e especificidade (Sp);
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• valor preditivo positivo (VPP);

• valor preditivo negativo (VPN);

• área sob a curva ROC (AUC);

• medida F ou F score;

• coeficiente Kappa de Cohen (Cohen’s k);

4.1.2.6 Teste de permutação

O teste de permutação tem o objetivo de avaliar se o modelo sofreu overfitting
(sobreajuste). Para tanto foi empregada a função permutation_test_score (sklearn.model_-
selection) em scikit-learn (PEDREGOSA et al., 2011), com 10 permutações e a validação
cruzada de 5 folds, conforme recomendação de (JORNER et al., 2021).

O valor de p foi avaliado com a finalidade de indicar a completa falta de aprendizado,
quando há randomização dos dados. Isso permite a busca por uma forte evidência de que
os modelos não estão apenas aprendendo ruído, mas estão encontrando um valor real.

4.1.3 Etapa 03 - Validação dos modelos

4.1.3.1 Previsão de consenso da avaliação externa definida no Domínio de Aplicabilidade

O domínio de aplicabilidade foi definido a partir das seguintes etapas:

1. avaliação da similaridade molecular: a similaridade molecular de um bit de impressão
digital corresponde a um fragmento da molécula obtido a partir da impressão digital
das moléculas, tendo como métrica a similaridade padrão obtida pelo coeficiente de
Tanimoto. Nesta etapa, foi utilizado o programa KNIME Analytics (KNIME, 2021),
com a biblioteca RDKit e a função rdkit.DataStructs.FingerprintSimilarity(). Vale
destacar que cada bit de impressão digital corresponde a um fragmento da molécula
onde as moléculas semelhantes têm muitos fragmentos em comum.

2. depois da avaliação de similaridade molecular, o valor da probabilidade associada à
previsão de cada instância dentro do grupo de moléculas similares é definida, variando
de acordo com cada algoritmo de classificação. A função predict_proba foi utilizada
para a obtenção da força de ligação a um rótulo ou score (variável threshold_ad) de
cada instância a um rótulo (0 ou 1 - ativo ou inativo, respectivamente) calculados
para cada algoritmo.

3. após o cálculo do valor de AD, modelos que apresentaram score maior que o limite
AD (threshold_ad) foram classificados como modelos AD.
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Após a identificação do grupo de moléculas que formam o AD, foi medido o grau
de confiança das previsões (o quão certo um modelo de aprendizado de máquina está sobre
sua previsão) de cada molécula a um rótulo (Figura 19). Isto foi considerado da seguinte
forma, após avaliação se a molécula recebeu um valor previsto (ativo ou inativo), por
descritor:

1. se a molécula obteve consenso de um mesmo rótulo (ativo ou inativo) em todos os
descritores, esta molécula se enquadra no grupo de Consenso.

2. se essa molécula está também no grupo AD de todos os descritores (score maior que
o limite AD calculado), ela se enquadra no grupo de AD do respectivo descritor em
questão.

3. se a molécula está em todos ADs, de todos os descritores, com o mesmo rótulo, ela
se enquadra no grupo de Consenso AD.

4. enfim, o valor do rótulo referente à molécula é comparado em todos os descritores,
descritores AD e consenso AD. Se o rótulo é o mesmo, a molécula fará parte do
grupo Consenso Rigor.

Figura 19 – Etapas empregadas para a previsão de consenso e construção do AD. Fonte:
Autoria própria.

A Tabela 4 ilustra um exemplo de como tabular os dados.
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Tabela 4 – Exemplo de tabulação de consenso para obtenção do AD.

SMILES Descritor
1

Desc.
1 AD

Desc.
2

Desc.
2 AD Consenso Consenso

AD
Consenso

Rigor
Molécula 1 1 1 1 1 1 1 1
Molécula 2 0 0 0 0

4.1.4 Etapa 04 - Triagem virtual em bases de dados químicos

4.1.4.1 Previsão de consenso dos compostos com os modelos obtidos

Os modelos do grupo “Consenso com rigor” obtidos a partir do consenso dos
descritores demonstram quais modelos (obtidos a partir de diferentes tipos de descritores
e diferentes algoritmos) são mais eficientes na previsão da propriedade-alvo (atividade
biológica). A seguir, os modelos podem ser aplicados em uma grande base de dados
químicos como filtros moleculares, onde novamente é avaliada a capacidade preditiva de
cada modelo.

O procedimento de consenso (Etapa 03) dos resultados dos modelos para cada
molécula é também aplicado durante a triagem virtual. As moléculas com maior força de
ligação dentro do consenso (hits) ao rótulo de “Ativo” são selecionadas.

4.1.4.2 Execução do procedimento de triagem virtual

A Figura 20 apresenta o passo-a-passo para execução da triagem virtual, etapa que
será realizada futuramente.
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Figura 20 – Método proposto para realização da triagem virtual. Fonte: Autoria própria.

A próxima seção apresenta os resultados obtidos após a realização de todas as
etapas previstas neste estudo.
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5 AVALIAÇÃO EXPERIMENTAL

Os resultados alcançados neste trabalho serão apresentados e discutidos neste
capítulo, que se destinam a construção e validação de modelos QSAR direcionados à
doença de Alzheimer. Estes modelos foram utilizados como filtros moleculares em uma
grande base de dados de compostos com a finalidade de identificar candidatos a fármacos
como potenciais inibidores da enzima AChE. Os resultados completos deste estudo estão
disponíveis no GitHub para acesso público.

5.1 Preparação dos dados

5.1.1 Definição do alvo químico

O alvo biológico definido foi a enzima Acetilcolinesterase (AChE) (Figura 21) em
função da sua importância na fisiopatologia da doença de Alzheimer, pois ela está envolvida
na degradação da acetilcolina e sua inibição pode aliviar os sintomas da doença. Além disso,
a AChE é um biomarcador reconhecido da doença (WALCZAK-NOWICKA; HERBET,
2021).

Figura 21 – Estruturas de acetilcolinesterase. Fonte: www.rcsb.org/structure/1b41

A construção do conjunto de dados de treinamento e teste teve início com um total
de 8.832 compostos químicos, os quais foram submetidos a testes de inibição da AChE,
usando a API do banco de dados ChemBL ((chembl-webresource-client)) (CHEMBL, 2023).

https://github.com/leandropedrosa/virtual-screening-qsar-alheimer-acetylcholinesterase
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5.1.2 Organização e avaliação da acurácia do conjunto de dados original

O conjunto de dados foi estruturado em duas categorias distintas: uma destinada
aos dados de treinamento e teste, e a outra voltada para a triagem virtual. Os detalhes
sobre cada uma delas serão fornecidos nas seções subsequentes.

5.1.2.1 Dados de treinamento e testes

Para garantir que os compostos utilizados para o treinamento atendam aos requisitos
necessários para serem considerados candidatos a fármacos viáveis, as cinco regras de
Lipinski (LIPINSKI et al., 1997) foram aplicadas:

• massa molecular inferior a 500 Daltons;

• não mais que 5 doadores de ligações de hidrogênio;

• não mais que 10 aceitadores de ligações de hidrogênio;

• coeficiente de partição octan-1-ol/água (Log P) não superior a 5.

Após a conclusão da Análise Exploratória de Dados (EDA) usando os descritores
e as cinco regras de Lipinski (RDKIT, 2023), 8.832 compostos permaneceram na nossa
amostra.

Após a etapa de seleção de recursos, foi necessário realizar uma leve correção no
modelo de classificação, a qual consistiu na remoção de compostos químicos que não
se classificavam nas categorias de ativos ou inativos. Essa ação simplifica a tarefa de
classificação, uma vez que o modelo se concentra na previsão de apenas duas classes,
representadas numericamente como 1 (ativo) ou 0 (inativo). As seguintes etapas foram
executadas:

• inicialização dos dados: Inicia-se com um conjunto de dados com mais de 8.000
compostos químicos que foram testados para inibir a proteína acetilcolinesterase
(AChE).

• filtragem por proteína: Os dados foram filtrados para selecionar apenas a proteína
de interesse, a AChE.

• filtragem por atividade padrão (IC50): Os dados foram novamente filtrados para
manter apenas aqueles com atividade padrão do tipo IC50, que mede a concentração
inibitória em 50%.

• remoção de valores ausentes: As linhas com valores ausentes na coluna “stan-
dard_value” foram removidas, resultando em 7.549 linhas.
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• remoção de valores ausentes: As linhas com valores ausentes na coluna “stan-
dard_value” foram removidas, resultando em 7.549 linhas.

• definição de classes de bioatividade: Os valores na coluna “standard_value”
foram convertidos em classes de bioatividade com base em limites. Compostos com
valores maiores ou iguais a 10.000 foram considerados “inativos”, aqueles com valores
menores que 1.000 foram classificados como “ativos”, e os demais como “min effect”.
Essa ação resultou em 3.570 compostos ativos, 2.187 inativos e 1.792 com “min
effect”.

• criação de DataFrame com colunas selecionadas: Um novo DataFrame
(“data2”) foi criado contendo apenas as colunas relevantes, incluindo a classe de
bioatividade, o identificador de molécula, a estrutura química (SMILES) e o valor
padrão. O DataFrame resultante teve 7.549 linhas.

• cálculo de descritores de Lipinski: Os descritores de Lipinski, que são caracte-
rísticas físicas das moléculas, foram calculados para os compostos usando a função
“mol_descriptors”. Esses descritores incluíram o peso molecular, o número de doado-
res de hidrogênio, o número de aceitadores de hidrogênio e o coeficiente de partição
octanol-água (logP).

• filtragem de outliers de pIC50: Os valores de pIC50 (potência da atividade)
foram normalizados e os outliers identificados e removidos, resultando em 7.487
compostos.

• filtragem final de outliers de pIC50: Os outliers foram novamente identificados
e removidos, resultando em 7.483 compostos.

• remoção de linhas com valores ausentes: As linhas com valores ausentes foram
removidas do DataFrame, mantendo 7.483 compostos.

• remoção de coluna redundante: A coluna “standard_value” foi removida do
DataFrame.

• filtragem de compostos que violam as regras de Lipinski: As regras de
Lipinski (Peso molecular < 500 daltons, logP < 5, número de doadores de hidrogênio
< 5, número de aceitadores de hidrogênio < 10) foram verificadas para cada composto.
Os compostos que violaram mais de uma regra foram excluídos, resultando em 6.385
compostos.

• salvando dados para classificação e regressão: Os dados foram separados em
dois DataFrames: um para classificação (com coluna “bioactivity_class”) e outro
para regressão (sem coluna “bioactivity_class”).
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• preparação para a engenharia de características: Os dados foram preparados
para a engenharia de características, selecionando as colunas “canonical_smiles” e
“molecule_chembl_id”, salvando-as em arquivos separados.

• resultado final: O DataFrame resultante contém 4.829 compostos químicos após
todas as etapas de filtragem e preparação de dados.

O resultado final consiste em um conjunto de dados preparado e pronto para
ser usado na criação de modelos de aprendizado de máquina, tanto para as tarefas de
classificação quanto para regressão.

A Figura 22 ilustra o intervalo interquartil (IQR) da distribuição dos dados,
categorizados em três classes distintas com base no pIC50:

Figura 22 – Distribuição do pIC50 - Alvo (candidatos válidos). Fonte: Autoria própria.

• classe “active”: Composta por 3.507 amostras, esta classe possui uma média de
pIC50 de, aproximadamente, 7.24, com uma dispersão moderada, indicada por um
desvio padrão de cerca de 0.89. Os valores variam de 0 (mínimo) a 10.19 (máximo),
sendo a maioria dos dados concentrados entre 6.52 (primeiro quartil) e 7.80 (terceiro
quartil).

• classe “inactive”: Composta por 2.186 amostras, essa classe apresenta uma média de
pIC50 de cerca de 4.22 e um desvio padrão de, aproximadamente, 0.67. Os valores
dessa classe variam de 2.00 (mínimo) a 5.00 (máximo), com a maior parte dos dados
situada entre 3.98 (primeiro quartil) e 4.75 (terceiro quartil).

• classe “min effect”: Com 1.790 amostras, esta classe apresenta uma média de pIC50
em torno de 5.48, com baixa dispersão indicada por um desvio padrão de cerca de
0.29. Os valores dessa classe variam de 5.00 (mínimo) a 6.00 (máximo), sendo a
maioria dos dados concentrados entre 5.23 (primeiro quartil) e 5.72 (terceiro quartil).
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A Figura 23 apresenta a distribuição da frequência dos dados com base no pIC50,
apresentando alguns pontos importantes a serem considerados:

Figura 23 – Distribuição da frequência de pIC50. Fonte: Autoria própria.

• diversidade de dados: O conjunto de dados parece ser rico e diversificado, abran-
gendo uma gama de valores de pIC50 para cada classe. Essa diversidade é funda-
mental para treinar modelos robustos que possam generalizar bem para novos dados,
contribuindo para evitar o overfitting.

• número de amostras: O número total de amostras para cada classe (“active”,
“inactive” e “min effect”) é razoável, o que é importante para treinar modelos
estatisticamente significativos. No entanto, vale ressaltar que quanto mais dados,
geralmente é melhor, especialmente para os modelos de aprendizado profundo.

• diferenças significativas entre classes: As estatísticas mostram que as médias
de pIC50 são significativamente diferentes entre as classes, sendo um indicativo
positivo, pois sugere que os modelos têm potencial para aprender a distinguir entre
as diferentes classes de atividade biológica.

• baixa dispersão em “min effect”: A classe “min effect” apresenta uma baixa
dispersão, indicada por um desvio padrão baixo, em comparação com as outras duas
classes. Isso pode ser um desafio, pois os modelos podem ter dificuldade em distinguir
as amostras dessa classe devido à sua proximidade nas características.
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• dados desbalanceados: Destaca-se que o número de amostras em cada classe está
desbalanceado, com a classe “active” tendo mais amostras do que as outras duas. Isso
pode exigir técnicas de balanceamento de dados durante o treinamento do modelo
para evitar qualquer viés resultante do desequilíbrio das classes.

5.1.2.2 Dados para triagem virtual

Nesta seção é apresentado o fluxo para a criação de um conjunto de dados (data-
set) para a triagem virtual de compostos químicos, usando o PubChem como fonte de
informações. A triagem virtual é um processo computacional essencial para a descoberta
de medicamentos, cujo objetivo é identificar compostos químicos que têm potencial para
se ligar a uma proteína alvo específica, nesse caso, a AChE (CARPENTER; HUANG,
2018). Os seguintes passos desse fluxo foram executados:

• passo 1: leitura de ligantes conhecidos em um arquivo

– Neste primeiro passo, ligantes conhecidos para a Acetilcolinesterase (AChE)
foram extraídos de um arquivo chamado “actives_final.ism”. Esses ligantes
foram usados como consultas-chave na triagem virtual.

– Total de ligantes conhecidos: 453 ligantes.

• passo 2: busca de similaridade no PubChem

– Neste segundo passo, cada um dos ligantes conhecidos foi usado como consulta
em uma busca de similaridade no PubChem. O objetivo foi encontrar compostos
químicos disponíveis no PubChem que compartilhem semelhanças estruturais
com os ligantes conhecidos.

– Total de compostos semelhantes encontrados: 159.470.

• passo 3: exclusão dos compostos de consulta dos resultados

– Como vários ligantes conhecidos foram usados como consulta, existiu a possibili-
dade de alguns deles fossem devolvidos como resultados da busca de similaridade,
usando outros ligantes como consulta. Para evitar duplicações, neste terceiro
passo, os compostos de consulta foram excluídos dos resultados, deixando apenas
os compostos não duplicados.

– Total de compostos após a exclusão: 158.597.

• passo 4: filtragem de compostos não adequados para medicamentos

– Neste quarto passo, os compostos químicos nos resultados da busca foram
filtrados com base em quatro propriedades moleculares: número de doadores
de ligação de hidrogênio, número de receptores de ligação de hidrogênio, peso
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molecular e logP (partição octanol-água). Esses critérios estão alinhados aos
critérios estabelecidos na regra dos cinco de Lipinski, os quais visam contribuir
com a identificação de compostos que têm maior probabilidade de se tornarem
medicamentos:

∗ número de doadores de ligações de hidrogênio (HBondDonorCount): os
compostos com até 5 doadores de ligações de hidrogênio foram mantidos.
Número de compostos que atenderam a este critério: 158.360

∗ número de Receptores de Ligações de Hidrogênio (HBondAcceptorCount): os
compostos com até 10 receptores de ligações de hidrogênio foram mantidos.
Número de compostos que atenderam a este critério: 157.829

∗ peso Molecular (MolecularWeight): os compostos com um peso molecular
igual ou inferior a 500 foram mantidos. Número de compostos que atenderam
a este critério: 146.837

∗ coeficiente de Partição Octanol-Água, XLogP (LogP): os compostos com
um valor de LogP menor que 5 foram mantidos. Número de compostos que
atenderam a este critério: 119.056

– Finalmente, o DataFrame foi filtrado para reter apenas os compostos que
atenderam a todos os critérios de Lipinski, simultaneamente, resultando em um
total de 117.379 compostos adequados para experimentos de triagem virtual ou
ancoragem molecular.

• passo 5: desenho das estruturas dos 10 principais compostos

– Neste quinto passo, as estruturas químicas dos 10 principais compostos da base
de dados acurada foram desenhadas e exibidas, baseada na similaridade (CID).

• passo 6: extração de compostos exclusivos com base em SMILES canônicos

– Neste sexto passo, os compostos foram submetidos a um filtragem para garantir
que apenas as estruturas únicas fossem mantidas, com base em seus SMILES
canônicos, ajudando a reduzir a redundância na lista de compostos.

– Compostos únicos após filtragem: 117.379

• passo 7: salvando os compostos em arquivos

– Por fim, os compostos químicos resultantes foram salvos em arquivos no formato
.mol, preparando-os para serem utilizados em experimentos de ancoragem
molecular ou triagem virtual.

Vale ressaltar que, à medida que os critérios de triagem foram sendo aplicados,
o número de compostos filtrados foi diminuindo, resultando em um conjunto final de
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compostos candidatos que atendem aos requisitos de propriedades moleculares desejadas
para potenciais medicamentos. Os dados também revelam informações sobre a dispersão
de propriedades, como peso molecular e LogP, nos compostos que atendem aos critérios de
Lipinski (LIPINSKI et al., 1997).

A Figura 24 ilustra o histograma de peso molecular, revelando que a maioria
das observações se concentra no intervalo entre 298.985 e 319.0665, totalizando 12.346
observações. Esse gráfico permite observar como as contagens de observações variam à
medida que o peso molecular aumenta ou diminui.

Figura 24 – Histograma do peso molecular. Fonte: Autoria própria.

A Figura 25 representa o histograma LogP. Os dados revelam que a maioria das
observações tem um LogP entre 1.05 e 1.435, totalizando 4.740 observações nesse intervalo.
Além disso, o gráfico permite observar como a contagem de observações varia conforme o
valor de LogP aumenta ou diminui.

Figura 25 – Histograma do LogP. Fonte: Autoria própria.
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A dispersão dos pontos no gráfico (Figura 26) demonstra como as duas variáveis
MolecularWeight e XLogP estão relacionadas. Esse gráfico é útil para identificar as tendên-
cias, padrões ou correlações entre as variáveis. A concentração dos pontos em uma área
específica indica a existência de uma possível correlação ou relação entre as duas variáveis.

Figura 26 – Gráfico de dispersão de peso molecular vs LogP. Fonte: Autoria própria.

Portanto, ao término do processo, foram incluídos um total de 117.379 compostos
(Figura 27) para a realização da triagem virtual.

Figura 27 – Distribuição do percentual de compostos incluídos e não incluídos. Fonte:
Autoria própria.

As Figuras (28, 29, 30, 31, 32) ilustram os 10 principais compostos da base de
dados acurada para a realização da triagem virtual.
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Figura 28 – Compostos 1 e 2. Fonte: Autoria própria.

Figura 29 – Compostos 3 e 4. Fonte: Autoria própria.

Figura 30 – Compostos 5 e 6. Fonte: Autoria própria.
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Figura 31 – Compostos 7 e 8. Fonte: Autoria própria.

Figura 32 – Compostos 9 e 10. Fonte: Autoria própria.

5.1.3 Seleção e cálculo dos descritores (variáveis) moleculares

Neste estudo, ferramentas e métodos foram utilizados para a seleção e cálculo de
descritores moleculares, com o objetivo de caracterizar as moléculas químicas da base de
dados. Os principais resultados incluem:

• RDKit e MolecularDescriptorCalculator : a biblioteca RDKit, uma ferramenta
de química computacional em Python, foi utilizada para calcular vários descritores
moleculares. Esses descritores numéricos resumem as características fundamentais
das moléculas, tais como: o tamanho, a forma e a polaridade. Dentre os descritores
calculados, destacam-se o LogP (coeficiente de partição octanol-água) e o peso
molecular. Esses descritores são muito utilizados em química medicinal e modelagem
molecular (RASHDAN; ABDELMONSEF, 2022).

• Impressões Digitais Moleculares (Morgan Fingerprint): o RDKit também
proporcionou a capacidade de calcular impressões digitais moleculares, especifica-
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mente a Impressão Digital de Morgan. Essa representação binária (0s e 1s) da
estrutura molecular é calculada pela função GetMorganFingerprintAsBitVect. A Im-
pressão Digital de Morgan é baseada em hashes dos ambientes atômicos da molécula
e é valiosa para tarefas de busca química e similaridade molecular, sendo frequente-
mente utilizada em triagem virtual de compostos químicos e química computacional
(FIGUERAS, 1993).

• Simplex Representation of Molecular Structure (SiRMS): o SiRMS, ou
Representação Simples da Estrutura Molecular, é um método que captura a topologia
e a geometria das moléculas. Ele descreve moléculas como conjuntos de simplexos
(polígonos tridimensionais) que refletem a conectividade entre átomos e a distância
entre eles. Essa representação é aplicada em análises estruturais de moléculas e em
simulações de dinâmica molecular, contribuindo para a compreensão detalhada das
propriedades moleculares (XUE; BAJORATH, 2000).

5.2 Construção dos modelos QSAR

5.2.1 Modelagem do conjunto de dados

Neste estudo, realizou-se a modelagem do conjunto de dados visando a preparação
dos mesmos para a criação e validação de modelos de aprendizado de máquina e aprendizado
profundo. O conjunto de dados final, após todas as etapas de seleção e filtragem, foi
composto de 4.829 amostras, distribuídas nas seguintes classes:

• classe 1 (Ativo): este grupo é composto por 2.841 amostras. Essas amostras
representam compostos químicos que demonstraram atividade como inibidores da
enzima alvo (AChE) e são potenciais candidatos a fármacos para o tratamento da
doença de Alzheimer.

• classe 0 (Inativo): a classe de inativos é formada por 1.988 amostras. Essas
amostras representam compostos que não demonstraram atividade significativa como
inibidores da enzima AChE.

A distribuição dessas classes pode ser visualizada nas Figuras 33 e 34, que apresen-
tam a frequência e densidade das amostras em cada classe.
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Figura 33 – Frequência dos dados. Fonte: Autoria própria.

Figura 34 – Densidade dos dados. Fonte: Autoria própria.

Além disso, os descritores moleculares foram calculados, resultando nas seguintes
características:

• número de Entradas (Amostras): o conjunto de dados é composto por 4.829
entradas, representando as diferentes amostras químicas consideradas neste estudo.

• colunas do Conjunto de Dados: o conjunto de dados possui um total de 20
colunas, cada uma com informações específicas. Essas colunas incluem informações
como identificadores, propriedades químicas, classes de bioatividade, dentre outras.

• descritores Moleculares: três conjuntos distintos de descritores moleculares foram
calculados para cada amostra:

– Morgan: 2048 descritores foram calculados usando o método Morgan, forne-
cendo informações detalhadas sobre a estrutura molecular.
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– RDKit: 207 descritores foram obtidos utilizando a biblioteca RDKit, fornecendo
informações adicionais sobre as características das moléculas.

– SiRMS: 1384 descritores foram gerados por meio do método SiRMS, capturando
os aspectos topológicos e geométricos das moléculas.

5.2.2 Divisão do conjunto de dados em conjuntos de treinamento e teste

Na etapa de preparação do conjunto de dados, os dados foram divididos em
conjuntos de treinamento e teste para permitir a avaliação do desempenho dos modelos de
aprendizado de máquina e aprendizado profundo. Esses conjuntos foram assim divididos:

• conjuntos de treinamento (X_train e y_train): esses conjuntos representam
80% dos dados originais. O conjunto X_train possui a forma (3.863, número de
descritores), o que significa que contém 3.863 exemplos de treinamento, sendo que
cada exemplo é caracterizado por um conjunto de descritores moleculares. Por sua
vez, o conjunto y_train tem 3.863 descritores e contém os rótulos correspondentes
para os exemplos de treinamento. Esses rótulos indicam a classe de bioatividade de
cada amostra, ou seja, se o composto é ativo ou inativo em relação à enzima AChE.

• conjuntos de validação externa (X_val_ext e y_val_ext): esses conjuntos
são destinados à validação externa e representam os 20% restantes dos dados originais.
O conjunto X_val_ext consiste de 966 exemplos de teste, cada um com descritores
moleculares. O conjunto y_val_ext, por sua vez, tem 966 descritores e contém
os rótulos correspondentes para os exemplos de teste, indicando suas classes de
bioatividade.

5.2.3 Construção dos modelos usando os conjuntos de treinamento

Neste estágio do processo, esforços foram dedicados para a criação de modelos
de aprendizado de máquina e aprendizado profundo, fazendo uma divisão de dados para
treinamento e testes, validação externa, bem como uma busca por hiperparâmetros usando
RandomizedSearchCV. Para tanto, foi feito:

• divisão dos dados: primeiramente, uma divisão estratégica dos dados foi feita nos
conjuntos de treinamento e teste, bem como uma divisão adicional para a validação
externa.

– X_train e y_train compreendem 80% dos dados originais e foram usados para
treinar os modelos.

– X_val_ext e y_val_ext constituem os 20% restantes e foram reservados para a
validação externa.
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– A divisão foi realizada usando a função train_test_split, onde a parcela de teste
corresponde a 20% dos dados.

• definição da validação cruzada estratificada: é uma técnica crucial para a
avaliação do desempenho do modelo, a qual foi adotada a abordagem de valida-
ção cruzada estratificada (StratifiedKFold) com 5 divisões. Essa estratégia garante
que todos os subconjuntos incluam a mesma porcentagem de amostras positivas e
negativas, tornando a avaliação mais confiável e justa (ALAMRO et al., 2023).

• busca por hiperparâmetros (RandomizedSearchCV): os modelos de aprendi-
zado de máquina dependem de hiperparâmetros bem ajustados para obter seu melhor
desempenho. Assim, foram definidos os espaços de hiperparâmetros para três tipos
de modelos: RandomForestClassifier, SVM e MLP. A busca por hiperparâmetros
foi realizada por meio da técnica RandomizedSearchCV, que explora combinações
aleatórias de hiperparâmetros dentro dos espaços definidos. Esse processo ocorre em
um loop de validação cruzada de 5 divisões para cada modelo. Durante a busca, os
modelos são ajustados aos dados de treinamento, e os hiperparâmetros são otimizados.
Os resultados de desempenho foram apresentados em métricas, dentre elas: acurácia,
MCC (Matthews Correlation Coefficient), Kappa, matriz de confusão e relatório de
classificação.

• seleção do melhor modelo): foi escolhido com base em uma métrica de pontuação
definida. Essa estratégia permite reter o modelo que atinge a maior pontuação,
garantindo a qualidade do modelo final. Vale ressaltar que esse processo é aplicado a
cada tipo de modelo (RandomForestClassifier, SVM e MLP), resultando nos melhores
modelos de cada categoria.

• tuner para redes neurais (Keras Tuner): a busca por hiperparâmetros em
redes neurais é uma tarefa desafiadora, para a qual foi utilizado o Keras Tuner. A
função “build_model” foi configurada para criar os modelos de redes neurais com
hiperparâmetros ajustáveis, como o número de unidades e a taxa de aprendizado.
Um tuner é configurado com a técnica RandomSearch, que explora combinações
promissoras de hiperparâmetros para a rede neural. A busca é limitada a um número
específico de tentativas (5), com várias execuções por tentativa (3). Os melhores
modelos de redes neurais identificados pelo tuner são armazenados como “best_-
models”.

5.2.4 Validação dos modelos usando conjuntos de teste

5.2.4.1 Descritores Morgan: Dados de treinamentos e testes

A Figura 35 apresenta a comparação dos três modelos: MLP, SVM e Random
Forest usando os descritores de Morgan.
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Figura 35 – Comparação dos modelos. Fonte: Autoria própria.

Sobre o MLP, a melhor pontuação média foi 0.8996, o que indica um desempenho
muito bom. As médias das pontuações em diferentes configurações de hiperparâmetros
variaram, mas em geral, foram altas, acima de 0.85. Esse resultado demonstra que o MLP
foi consistente em fornecer bom desempenho em várias configurações. A Tabela 5 apresenta
o resultado da validação cruzada estratificada para o algoritmo MLP e descritor Morgan.

Em relação ao SVM, a melhor pontuação média foi 0.8747, o que também é uma
pontuação considerável. No entanto, as médias das pontuações em algumas configurações
foram baixas, por exemplo, 0.5899. Esse resultado indica que o desempenho do SVM
pode ter sido muito sensível aos hiperparâmetros, e algumas configurações podem não ter
funcionado bem. A Tabela 6 apresenta o resultado da validação cruzada estratificada para
o algoritmo SVM e descritor Morgan.

Já o Random Forest, a melhor pontuação média foi 0.8882, que ficou entre as
pontuações do MLP e do SVM. Assim como o SVM, o desempenho do Random Forest
variou em diferentes configurações, com algumas tendo médias mais baixas. O Random
Forest também mostrou sensibilidade aos hiperparâmetros, mas em geral, foi uma escolha
sólida. A Tabela 7 apresenta o resultado da validação cruzada estratificada para o algoritmo
Random Forest e descritor Morgan.

A busca pelos melhores hiperparâmetros se faz necessária para a obtenção de
desempenho otimizado (WU et al., 2019). A aplicação de descritores Morgan em cada um
dos modelos de aprendizado de máquina (MLP, SVM e o Random Forest) revelou suas
configurações ideais, demonstrando a importância do refinamento dos hiperparâmetros
para extrair o máximo potencial desses modelos na análise de dados químicos e biológicos.
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Tabela 5 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo MLP e descritor Morgan

Rank Configuração Score Médio Desvio Padrão
1 activation: relu, alpha: 0.01, hidden_-

layer_sizes: 24, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.8996 0.0084

2 activation: tanh, alpha: 1.0, hidden_-
layer_sizes: 98, learning_rate: constant,
max_iter: 2000, solver: sgd

0.8918 0.0088

3 activation: logistic, alpha: 0.1, hidden_-
layer_sizes: 92, learning_rate: adaptive,
max_iter: 2000, solver: sgd

0.8931 0.0056

4 activation: tanh, alpha: 10.0, hidden_-
layer_sizes: 71, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.8892 0.0097

5 activation: logistic, alpha: 0.001, hid-
den_layer_sizes: 16, learning_rate:
constant, max_iter: 2000, solver: sgd

0.8915 0.0080

6 activation: relu, alpha: 0.01, hidden_-
layer_sizes: 73, learning_rate: constant,
max_iter: 2000, solver: sgd

0.8915 0.0080

7 activation: tanh, alpha: 100.0, hidden_-
layer_sizes: 69, learning_rate: constant,
max_iter: 2000, solver: sgd

0.8853 0.0072

8 activation: relu, alpha: 10.0, hidden_-
layer_sizes: 51, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.8967 0.0090

9 activation: relu, alpha: 100.0, hidden_-
layer_sizes: 33, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.8545 0.0097

10 activation: logistic, alpha: 0.0001, hid-
den_layer_sizes: 97, learning_rate:
invscaling, max_iter: 2000, solver:
adam

0.8825 0.0101



78

Tabela 6 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo SVM e descritor Morgan

Rank Configuração Score Médio Desvio Padrão
1 C: 9756.896309824398, gamma:

3.064599841241146e-05, kernel: rbf
0.8747 0.0125

2 C: 608.0332116863503, gamma:
0.015509913987594298, kernel: rbf

0.8765 0.0071

3 C: 0.15252471554120095, gamma:
0.00010929592787219392, kernel: rbf

0.7631 0.0135

4 C: 16.344819951627372, gamma:
0.09047071957568387, kernel: rbf

0.8405 0.0056

5 C: 7.4511565022821e-05, gamma:
1.235838277230692e-05, kernel: rbf

0.7072 0.0121

6 C: 0.004476173538513515, gamma:
0.004712973756110781, kernel: rbf

0.8395 0.0071

7 C: 4.977409198051348e-06, gamma:
1.1567327199145976, kernel: rbf

0.5899 0.0004

8 C: 0.00015201960735785719, gamma:
1.9223460470643646e-05, kernel: rbf

0.5899 0.0004

9 C: 0.015509913987594298, gamma:
6.156997328235204, kernel: rbf

0.6283 0.0046

10 C: 0.00010929592787219392, gamma:
0.09047071957568387, kernel: rbf

0.7546 0.0070

• MLP

– Melhor pontuação (best_score): 0.8996

– Melhores parâmetros (best_params):

∗ função de ativação (activation): “relu”
∗ alpha: 0.01
∗ número de neurônios nas camadas ocultas (hidden_layer_sizes): 24
∗ taxa de aprendizado (learning_rate): “adaptive”
∗ número máximo de iterações (max_iter): 2000
∗ Solver : “adam”

– Pontuação Média nos Testes (mean_test_score): [0.8996, 0.8931, 0.8545, 0.8825,
0.8618, 0.8853, 0.8967, 0.8892, 0.8918, 0.8915]

• SVM

– Melhores parâmetros (best_params):

∗ parâmetro C: 9756.8963
∗ parâmetro gamma: 3.0646e-05
∗ kernel: “rbf”
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Tabela 7 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo Random Forest e descritor
Morgan

Rank Configuração Score Médio Desvio Padrão
1 bootstrap: False, criterion: entropy,

max_depth: 18, max_features: 292,
min_samples_leaf: 9, min_samples_-
split: 3, n_estimators: 439

0.8882 0.0052

2 bootstrap: True, criterion: entropy,
max_depth: 15, max_features: 409,
min_samples_leaf: 8, min_samples_-
split: 8, n_estimators: 221

0.8744 0.0072

3 bootstrap: True, criterion: gini, max_-
depth: 11, max_features: 409, min_-
samples_leaf: 4, min_samples_split: 9,
n_estimators: 763

0.8765 0.0071

4 bootstrap: False, criterion: entropy,
max_depth: 1, max_features: 682,
min_samples_leaf: 12, min_samples_-
split: 18, n_estimators: 574

0.5899 0.0004

5 bootstrap: True, criterion: gini, max_-
depth: 10, max_features: 682, min_-
samples_leaf: 16, min_samples_split:
16, n_estimators: 289

0.8405 0.0056

6 bootstrap: False, criterion: gini, max_-
depth: 19, max_features: 682, min_-
samples_leaf: 20, min_samples_split:
4, n_estimators: 584

0.8729 0.0047

7 bootstrap: True, criterion: gini, max_-
depth: 9, max_features: 409, min_sam-
ples_leaf: 18, min_samples_split: 5,
n_estimators: 700

0.8237 0.0063

8 bootstrap: False, criterion: gini, max_-
depth: 7, max_features: 682, min_sam-
ples_leaf: 8, min_samples_split: 16,
n_estimators: 134

0.8395 0.0070

9 bootstrap: True, criterion: entropy,
max_depth: 2, max_features: 682,
min_samples_leaf: 12, min_samples_-
split: 7, n_estimators: 485

0.7072 0.0121

10 bootstrap: True, criterion: gini, max_-
depth: 4, max_features: 292, min_sam-
ples_leaf: 8, min_samples_split: 5, n_-
estimators: 101

0.7631 0.0135
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– melhor pontuação (best_score): 0.8747

– pontuação média nos testes (mean_test_score): [0.58995603, 0.6355177, 0.58995603,
0.58995603, 0.62826951, 0.58995603, 0.87471596, 0.58995603, 0.58995603, 0.75459518]

• Random Forest

– Melhores parâmetros (best_params):

∗ bootstrap: false
∗ critério de divisão (criterion): “entropy”
∗ profundidade máxima da árvore (max_depth): 18
∗ máximo de features (max_features): 292
∗ mínimo de amostras em folhas (min_samples_leaf ): 9
∗ mínimo de amostras em nós internos (min_samples_split): 3
∗ número de estimadores (n_estimators): 439

– Melhor pontuação (best_score): 0.8882

– Pontuação Média nos Testes (mean_test_score): [0.87444986, 0.87652106,
0.70722305, 0.58995603, 0.8405365, 0.87289613, 0.82371053, 0.88817004, 0.83950559,
0.76313837]

Em relação ao Tensorflow, temos os seguintes resultados:

• trial 5 complete: após 13 segundos de execução, a quinta tentativa (Trial 5) da
pesquisa de hiperparâmetros foi concluída.

• precisão de validação (val_accuracy): a precisão de validação da Trial 5 foi de apro-
ximadamente 0.8870, indicando o desempenho do modelo nesta tentativa específica.

• melhor precisão de validação até o momento: foi de cerca de 0.9107, o que sugere
que a Trial 5 não superou o melhor desempenho anterior.

• tempo total decorrido: o tempo total decorrido durante todo o processo de pesquisa
de hiperparâmetros foi de 53 segundos.

• hiperparâmetros otimizados: os melhores hiperparâmetros encontrados são represen-
tados por um objeto hyperParameters. estes hiperparâmetros específicos não foram
fornecidos na saída.

• melhor modelo encontrado: o melhor modelo identificado é uma rede neural sequencial
com a seguinte arquitetura:

– camada densa 1 com 416 neurônios.
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– camada densa 2 com 96 neurônios.

– camada densa 3 com 1 neurônio.

– total de parâmetros no modelo: 892,513.

– todos os parâmetros são treináveis (Trainable params: 892,513), o que significa
que o modelo pode ser ajustado durante o treinamento.

– não há parâmetros não treináveis (Non-trainable params: 0) no modelo.

5.2.4.2 Descritores SiRMS: Dados de treinamentos e teste

A Figura 36 apresenta a comparação dos três modelos: MLP, SVM e Random
Forest usando os descritores SiRMS.

Figura 36 – Comparação dos modelos. Fonte: Autoria própria.

O modelo MLP obteve uma média de pontuações durante a busca por hiper-
parâmetros, variando entre 0.6306 e 0.8693. Essa variação evidencia a sensibilidade do
desempenho do modelo MLP às diferentes configurações de hiperparâmetros testadas. A
melhor pontuação encontrada foi de aproximadamente 0.8693, destacando o potencial
do modelo em sua melhor configuração. A Tabela 8 apresenta o resultado da validação
cruzada estratificada para o algoritmo MLP e descritor SiRMS.

Já no modelo SVM, observamos que as médias de pontuações variaram entre 0.5899
e 0.8400 durante a busca por hiperparâmetros. Essa variação sugere que o desempenho
do modelo SVM também variou consideravelmente ao testar as diversas combinações
de hiperparâmetros. A melhor pontuação encontrada foi de cerca de 0.8400. A Tabela 9
apresenta o resultado da validação cruzada estratificada para o algoritmo SVM e descritor
SiRMS.

Durante a exploração dos hiperparâmetros, o modelo Random Forest apresentou
médias de pontuações, variando de 0.6024 a 0.8364. Assim como nos outros modelos, as
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Tabela 8 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo MLP e descritor SiRMS

Rank Configuração Score Médio Desvio Padrão
1 activation: logistic, alpha: 0.0001, hid-

den_layer_sizes: 97, learning_rate:
invscaling, max_iter: 2000, solver:
adam

0.865907 0.0116504

2 activation: relu, alpha: 0.01, hidden_-
layer_sizes: 24, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.859437 0.018464

3 activation: relu, alpha: 0.01, hidden_-
layer_sizes: 73, learning_rate: constant,
max_iter: 2000, solver: sgd

0.858662 0.00965879

4 activation: tanh, alpha: 1.0, hidden_-
layer_sizes: 98, learning_rate: constant,
max_iter: 2000, solver: sgd

0.85581 0.0148686

5 activation: logistic, alpha: 0.001, hid-
den_layer_sizes: 16, learning_rate:
constant, max_iter: 2000, solver: sgd

0.820092 0.0193891

6 activation: relu, alpha: 10.0, hidden_-
layer_sizes: 51, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.812843 0.0245042

7 activation: relu, alpha: 100.0, hidden_-
layer_sizes: 33, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.631635 0.0103565

8 activation: logistic, alpha: 0.1, hidden_-
layer_sizes: 92, learning_rate: adaptive,
max_iter: 2000, solver: sgd

0.812584 0.0168114

9 activation: tanh, alpha: 100.0, hidden_-
layer_sizes: 69, learning_rate: constant,
max_iter: 2000, solver: sgd

0.647167 0.00662246

10 activation: tanh, alpha: 1.0, hidden_-
layer_sizes: 98, learning_rate: constant,
max_iter: 2000, solver: sgd

0.820092 0.0193891
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Tabela 9 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo SVM e descritor SiRMS

Rank Configuração Score Médio Desvio Padrão
1 C: 0.0155099, gamma: 0.0155099, kernel:

rbf
0.84002 0.00611567

2 C: 0.00447617, gamma: 0.00471297, ker-
nel: rbf

0.824746 0.00859098

3 C: 608.033, gamma: 0.0155099, kernel:
rbf

0.869012 0.0149086

4 C: 0.152525, gamma: 0.000109296, ker-
nel: rbf

0.781768 0.0318786

5 C: 16.3448, gamma: 0.0904707, kernel:
rbf

0.844679 0.0161889

6 C: 1.76609, gamma: 6.157, kernel: rbf 0.863319 0.0137963
7 C: 0.0312235, gamma: 4.51856, kernel:

rbf
0.874706 0.0129533

8 C: 0.00015202, gamma: 1.92235e-05, ker-
nel: rbf

0.883253 0.0103789

9 C: 7.45116e-05, gamma: 1.23584e-05,
kernel: rbf

0.711621 0.0161448

10 C: 0.00015202, gamma: 0.000109296,
kernel: rbf

0.615845 0.0056231

pontuações mostraram variações significativas à medida que diferentes configurações de
hiperparâmetros foram avaliadas. A melhor pontuação encontrada para o modelo Random
Forest foi de aproximadamente 0.8364. A Tabela 10 apresenta o resultado da validação
cruzada estratificada para o algoritmo Random Forest e descritor SiRMS.

Os melhores hiperparâmetros utilizando os descritores SiRMS foram:

• Random Forest

– Melhor pontuação (best_score): 0.8364

– Melhores parâmetros (best_params): “bootstrap”: True, “criterion”: “gini”,
“max_depth”: 18, “max_features”: “auto”, “min_samples_leaf ”: 14, “min_-
samples_split”: 19, “n_estimators”: 200

– Pontuações médias nos testes (mean_test_score): [0.7916, 0.7958, 0.6539, 0.8348,
0.7432, 0.6997, 0.8364, 0.6024, 0.7051, 0.6529]

• MLP

– Melhor pontuação (best_score): 0.8693

– Melhores parâmetros (best_params): “activation”: “logistic”, “alpha”: 0.0001,
“hidden_layer_sizes”: 97, “learning_rate”: “invscaling”, “max_iter”: 2000,
“solver”: “adam”
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Tabela 10 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo Random Forest e descritor
SiRMS

Rank Configuração Score Médio Desvio Padrão
1 criterion: entropy, max_depth: 18,

max_features: 197, min_samples_leaf:
9, min_samples_split: 3, n_estimators:
439

0.883253 0.0103789

2 criterion: entropy, max_depth: 15,
max_features: 276, min_samples_leaf:
8, min_samples_split: 8, n_estimators:
221

0.874706 0.0129533

3 criterion: gini, max_depth: 11, max_-
features: 276, min_samples_leaf: 4,
min_samples_split: 9, n_estimators:
763

0.869012 0.0149086

4 criterion: entropy, max_depth: 1, max_-
features: 461, min_samples_leaf: 12,
min_samples_split: 18, n_estimators:
574

0.683922 0.0156668

5 criterion: gini, max_depth: 10, max_-
features: 461, min_samples_leaf: 16,
min_samples_split: 16, n_estimators:
289

0.844679 0.0161889

6 criterion: gini, max_depth: 9, max_-
features: 276, min_samples_leaf: 18,
min_samples_split: 5, n_estimators:
700

0.834324 0.0135906

7 criterion: gini, max_depth: 7, max_fea-
tures: 461, min_samples_leaf: 8, min_-
samples_split: 16, n_estimators: 134

0.835878 0.0179037

8 criterion: gini, max_depth: 4, max_fea-
tures: 197, min_samples_leaf: 8, min_-
samples_split: 5, n_estimators: 101

0.781768 0.0318786

9 criterion: entropy, max_depth: 2, max_-
features: 461, min_samples_leaf: 12,
min_samples_split: 7, n_estimators:
485

0.711621 0.0161448

10 criterion: entropy, max_depth: 1, max_-
features: 461, min_samples_leaf: 12,
min_samples_split: 18, n_estimators:
574

0.683922 0.0156668
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– Pontuações médias nos testes (mean_test_score): [0.8633, 0.8113, 0.6306, 0.8693,
0.6464, 0.8475, 0.8066, 0.7893, 0.8594, 0.8183]

• SVM

– Melhores parâmetros (best_params): “C”: 608.03, “gamma”: 0.0155, “kernel”:
“rbf ”

– Melhor pontuação (best_score): 0.8400

– Pontuações médias nos testes (mean_test_score): [0.5900, 0.8400, 0.5900, 0.5900,
0.8247, 0.5900, 0.8341, 0.5900, 0.5900, 0.6158]

Os seguintes resultados foram obtidos em relação ao Tensorflow:

• trial 5 complete: após 10 segundos de execução, a quinta tentativa (Trial 5) da
pesquisa de hiperparâmetros foi concluída.

• precisão de validação (val_accuracy): a precisão de validação da Trial 5 foi de
aproximadamente 0.8064, o que indica o desempenho do modelo nessa tentativa
específica.

• melhor precisão de validação até o momento: foi de cerca de 0.8461, o que indica
que a Trial 5 não superou o melhor desempenho anterior.

• tempo total decorrido: o tempo total decorrido durante todo o processo de pesquisa
de hiperparâmetros foi de 39 segundos.

• hiperparâmetros otimizados: os melhores hiperparâmetros encontrados são represen-
tados por um objeto hyperParameters. estes hiperparâmetros específicos não foram
fornecidos na saída.

• melhor modelo encontrado: o melhor modelo identificado foi uma rede neural sequen-
cial com a seguinte arquitetura:

– camada densa 1 com 192 neurônios.

– camada densa 2 com 32 neurônios.

– camada densa 3 com 1 neurônio.

– total de parâmetros no modelo: 272,129.

– todos os parâmetros são treináveis (trainable params: 272,129), indicando que o
modelo pode ser ajustado durante o treinamento.

– não há parâmetros não treináveis (Non-trainable params: 0) no modelo.
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5.2.4.3 Descritores RDKit: Dados de treinamentos e teste

A Figura 37 apresenta a comparação dos três modelos: MLP, SVM e Random
Forest usando os descritores RDKit.

Figura 37 – Comparação dos modelos. Fonte: Autoria própria.

Durante as buscas por hiperparâmetros, o modelo MLP apresentou uma média de
pontuação que variou de 0.5899 a 0.8996. Essa grande variação indica que o desempenho
do modelo MLP foi significativamente influenciado pelas diferentes configurações de
hiperparâmetros testadas. A melhor pontuação obtida foi aproximadamente 0.8996. A
Tabela 11 apresenta o resultado da validação cruzada estratificada para o algoritmo MLP
e descritor RDKit.

No caso do modelo SVM, as médias das pontuações variaram de 0.5899 a 0.8996
durante a busca por hiperparâmetros. Isso indica que o desempenho do modelo SVM
também foi sensível às diferentes combinações de hiperparâmetros testadas. A melhor
pontuação encontrada foi de cerca de 0.8400. A Tabela 12 apresenta o resultado da
validação cruzada estratificada para o algoritmo SVM e descritor RDKit.

O modelo Random Forest apresentou médias de pontuações variando de 0.5899 a
0.8996 durante a busca por hiperparâmetros. Da mesma forma que nos outros modelos,
as pontuações variaram à medida que diferentes configurações de hiperparâmetros foram
avaliadas. A melhor pontuação alcançada para o modelo Random Forest foi de, aproxima-
damente, 0.8364. A Tabela 13 apresenta o resultado da validação cruzada estratificada
para o algoritmo Random Forest e descritor RDKit.

Os melhores hiperparâmetros utilizando os descritores RDKit foram:

• Random Forest

– Melhor pontuação (best_score): 0.9008
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Tabela 11 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo MLP e descritor RDKit

Rank Configuração Score Médio Desvio Padrão
1 activation: logistic, alpha: 0.1, hidden_-

layer_sizes: 92, learning_rate: adaptive,
max_iter: 2000, solver: sgd

0.82913821 0.02317217

2 activation: logistic, alpha: 0.001, hid-
den_layer_sizes: 16, learning_rate:
constant, max_iter: 2000, solver: sgd

0.84183318 0.01533405

3 activation: gini, alpha: 100.0, hidden_-
layer_sizes: 98, learning_rate: constant,
max_iter: 2000, solver: sgd

0.88739418 0.01399989

4 activation: tanh, alpha: 1.0, hidden_-
layer_sizes: 98, learning_rate: constant,
max_iter: 2000, solver: sgd

0.88894657 0.01279425

5 activation: relu, alpha: 0.01, hidden_-
layer_sizes: 24, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.88506157 0.00596097

6 activation: relu, alpha: 10.0, hidden_-
layer_sizes: 51, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.82914927 0.00920324

7 activation: tanh, alpha: 10.0, hidden_-
layer_sizes: 71, learning_rate: adaptive,
max_iter: 2000, solver: adam

0.78747126 0.00999211

8 activation: tanh, alpha: 100.0, hidden_-
layer_sizes: 69, learning_rate: constant,
max_iter: 2000, solver: sgd

0.59254402 0.00232471

9 activation: logistic, alpha: 0.01, hid-
den_layer_sizes: 24, learning_rate:
adaptive, max_iter: 2000, solver: adam

0.58995603 0.00041358

10 activation: logistic, alpha: 0.0001, hid-
den_layer_sizes: 97, learning_rate:
invscaling, max_iter: 2000, solver:
adam

0.58990944 0.00041358
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Tabela 12 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo SVM e descritor RDKit

Rank Configuração Score Médio Desvio Padrão
1 C: 608.0332116863503, gamma:

0.015509913987594298, kernel: rbf
0.89645182 0.00987062

2 C: 0.03122348867288777, gamma:
4.518560951024106, kernel: rbf

0.8881687 0.01412344

3 C: 16.344819951627372, gamma:
0.09047071957568387, kernel: rbf

0.87134239 0.0079408

4 C: 0.15252471554120095, gamma:
0.00010929592787219392, kernel: rbf

0.79574902 0.02131956

5 C: 4.977409198051348e-06, gamma:
1.1567327199145976, kernel: rbf

0.67330333 0.01679328

6 C: 0.00015201960735785719, gamma:
1.9223460470643646e-05, kernel: rbf

0.58995603 0.00041358

7 C: 7.4511565022821e-05, gamma:
1.235838277230692e-05, kernel: rbf

0.58995603 0.00041358

8 C: 1.7660944735776943e-06, gamma:
6.156997328235204, kernel: rbf

0.58995603 0.00041358

9 C: 9756.896309824398, gamma:
3.064599841241146e-05, kernel: rbf

0.85865781 0.01621948

10 C: 0.004476173538513515, gamma:
0.004712973756110781, kernel: rbf

0.85788128 0.01694509

– Melhores parâmetros (best_params): “bootstrap”: False, “criterion”: “entropy”,
“max_depth”: 18, “max_features”: 29, “min_samples_leaf ”: 9, “min_samples_-
split”: 3, “n_estimators”: 439

– Pontuações médias nos testes (mean_test_score): [0.8881687, 0.88791064,
0.71964186, 0.67330333, 0.86461267, 0.87703752, 0.85788128, 0.90085395, 0.86383279,
0.79574902]

• MLP

– Melhor pontuação (best_score): 0.8995

– Melhores parâmetros (best_params): “activation”: “logistic”, “alpha”: 0.0001,
“hidden_layer_sizes”: 97, “learning_rate”: “invscaling”, “max_iter”: 2000,
“solver”: “adam”

– Pontuações médias nos testes (mean_test_score): [0.88506157, 0.82913821,
0.58995603, 0.89955794, 0.59254402, 0.88739418, 0.82914927, 0.78747126, 0.88894657,
0.84183318]

• SVM

– Melhores parâmetros (best_params): “C”: 608.0332116863503, “gamma”: 0.015509913987594298,
“kernel”: “rbf ”
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Tabela 13 – Score médio e desvio padrão para os hiperparâmetros treinados e testados na
validação cruzada estratificada para o algoritmo Random Forest e descritor
RDKit

Rank Configuração Score Médio Desvio Padrão
1 bootstrap: False, criterion: entropy,

max_depth: 18, max_features: 29,
min_samples_leaf: 9, min_samples_-
split: 3, n_estimators: 439

0.90085395 0.01282782

2 bootstrap: False, criterion: entropy,
max_depth: 1, max_features: 69, min_-
samples_leaf: 12, min_samples_split:
18, n_estimators: 574

0.86461267 0.01323663

3 bootstrap: True, criterion: entropy,
max_depth: 15, max_features: 41,
min_samples_leaf: 8, min_samples_-
split: 8, n_estimators: 221

0.8881687 0.01412344

4 bootstrap: True, criterion: gini, max_-
depth: 11, max_features: 41, min_sam-
ples_leaf: 4, min_samples_split: 9, n_-
estimators: 763

0.88791064 0.01460724

5 bootstrap: True, criterion: gini, max_-
depth: 10, max_features: 69, min_sam-
ples_leaf: 16, min_samples_split: 16,
n_estimators: 289

0.87703752 0.01434483

6 bootstrap: False, criterion: gini, max_-
depth: 4, max_features: 29, min_sam-
ples_leaf: 8, min_samples_split: 5, n_-
estimators: 101

0.79574902 0.02131956

7 bootstrap: True, criterion: gini, max_-
depth: 9, max_features: 41, min_sam-
ples_leaf: 18, min_samples_split: 5,
n_estimators: 700

0.85788128 0.01694509

8 bootstrap: True, criterion: entropy,
max_depth: 2, max_features: 69, min_-
samples_leaf: 12, min_samples_split:
7, n_estimators: 485

0.71964186 0.01739644

9 bootstrap: True, criterion: gini, max_-
depth: 9, max_features: 41, min_sam-
ples_leaf: 8, min_samples_split: 16,
n_estimators: 134

0.86383279 0.01694509

10 bootstrap: True, criterion: gini, max_-
depth: 2, max_features: 69, min_sam-
ples_leaf: 12, min_samples_split: 7,
n_estimators: 485

0.67330333 0.01679328
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– Melhor pontuação (best_score): 0.8964

– Pontuações médias nos testes (mean_test_score): [0.58995603, 0.89645182,
0.58995603, 0.58995603, 0.87134239, 0.58995603, 0.85865781, 0.58995603, 0.58995603,
0.59021476]

Os seguintes resultados foram obtidos em relação ao Tensorflow:

• trial 5 complete: após 13 segundos de execução, a quinta tentativa (Trial 5) da
pesquisa de hiperparâmetros foi concluída.

• precisão de validação (val_accuracy): a precisão de validação da Trial 5 foi de
aproximadamente 0.8870, indicando um desempenho promissor do modelo nesta
tentativa específica.

• melhor precisão de validação até o momento: a melhor precisão de validação encon-
trada até o momento da pesquisa foi de cerca de 0.9107. Portanto, a Trial 5 não
conseguiu superar o melhor desempenho anterior.

• tempo total decorrido: o tempo total decorrido durante todo o processo de pesquisa
de hiperparâmetros foi de 53 segundos, mostrando eficiência na otimização dos
hiperparâmetros.

• hiperparâmetros otimizados: os melhores hiperparâmetros encontrados são represen-
tados por um objeto HyperParameters cujos detalhes específicos não foram fornecidos
na saída.

• melhor modelo encontrado: o melhor modelo identificado foi uma rede neural sequen-
cial com a seguinte arquitetura:

– camada densa 1 com 416 neurônios.

– camada densa 2 com 96 neurônios.

– camada densa 3 com 1 neurônio.

– total de parâmetros no modelo: 892,513.

– o total de parâmetros no modelo é de 892,513, todos eles treináveis, o que
significa que o modelo pode ser ajustado durante o treinamento. Não haviam
parâmetros não treináveis no modelo. Este modelo parece ser bastante complexo
e pode ter a capacidade de capturar padrões complexos nos dados.

5.3 Seleção e validação dos modelos

Esta etapa visa realizar a avaliação externa de modelos de classificação QSAR
e considerar a questão do domínio de aplicabilidade (AD) desses modelos. A avaliação
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externa foi realizada em um conjunto de validação externa, que compreendeu 20% dos
dados do conjunto de dados total.

Para tanto, foi realizado o cálculo de várias métricas de desempenho do modelo
de classificação com base nas previsões (y_pred) e nos rótulos verdadeiros (y_test) do
conjunto de validação externa. As métricas incluem: o coeficiente Kappa, Área Sob a
Curva (AUC), sensibilidade, precisão, especificidade, valor preditivo negativo, acurácia, F1
Score e cobertura. Essas métricas foram utilizadas para avaliar o desempenho geral do
modelo em relação aos dados de validação externa.

A obtenção dessas métricas envolveu a realização de uma validação cruzada estrati-
ficada de 5 folds (BEY et al., 2020), com a mesma configuração utilizada para treinamento
e testes, no conjunto de validação externa para avaliar o modelo de classificação (m). O
procedimento envolveu as seguintes etapas:

• divisão dos dados de validação externa estratificada em 5 folds.

• treinamento do modelo (m) em 4 dos 5 folds, com avaliação no fold restante, repetindo
o processo cinco vezes (uma para cada fold).

• coleta das previsões (fold_pred) e dos valores de domínio de aplicabilidade (fold_ad)
para cada fold.

• aplicação de um limite (threshold_ad) aos valores de AD para determinar se um
exemplo está dentro do domínio de aplicabilidade ou não.

• combinação das previsões do modelo e dos valores de AD com base no limite, levando
em consideração o domínio de aplicabilidade nas previsões.

• cálculo da cobertura (coverage_5f ) para avaliar a proporção de exemplos que estão
dentro do domínio de aplicabilidade.

• cálculo das métricas de desempenho do modelo (usando o Método 1) e das métricas
de desempenho do modelo com AD em relação aos rótulos verdadeiros.

• apresentação das estatísticas de avaliação do modelo, incluindo métricas de desem-
penho e cobertura.

As tabelas e gráficos a seguir apresentam os valores correspondentes a cada métrica
e modelo. Estes incluem os descritores Morgan (Tabela 14 e Figura 38), SiRMS (Tabela
15 e Figura 39) e RDKit (Tabela 16 e Figura 40), os quais foram aplicados aos algoritmos
Random Forest, SVM, MLP e TensorFlow.
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Tabela 14 – Métricas calculadas para cada modelo obtido utilizando o Random forest,
SVM, MLP e TensorFlow com o descritor Morgan e o método de validação
cruzada estratificada 5-fold para o conjunto de substâncias com atividade
frente à enzima AChE

Kappa AUC Sens. PPV Espec. NPV Acur. F-score Cober.
Random forest

Morgan 0,61 0,81 0,81 0,85 0,81 0,75 0,81 0,83 1,00
Morgan AD 0,82 0,88 0,99 0,95 0,78 0,93 0,94 0,97 0,35

SVM
Morgan 0,59 0,79 0,84 0,82 0,74 0,77 0,80 0,83 1,00
Morgan AD 0,76 0,88 0,93 0,91 0,83 0,86 0,89 0,92 0,63

MLP
Morgan 0,65 0,82 0,87 0,84 0,78 0,81 0,83 0,86 1,00
Morgan AD 0,73 0,86 0,91 0,87 0,81 0,87 0,87 0,89 0,84

Tensorflow
Morgan 0,73 0,86 0,89 0,88 0,84 0,84 0,87 0,89

Figura 38 – Comparação de métricas para diferentes algoritmos e conjuntos de dados
usando o descritor Morgan. Fonte: Autoria própria.
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Tabela 15 – Métricas calculadas para cada modelo obtido utilizando o Random forest,
SVM, MLP e TensorFlow com o descritor SiRMS e o método de validação
cruzada estratificada 5-fold para o conjunto de substâncias com atividade
frente à enzima AChE

Kappa AUC Sens. PPV Espec. NPV Acur. F-score Cober.
Random forest

Morgan 0,60 0,80 0,85 0,82 0,74 0,78 0,80 0,83 1,00
Morgan AD 0,88 0,93 0,98 0,95 0,88 0,95 0,95 0,96 0,41

SVM
Morgan 0,53 0,76 0,84 0,78 0,68 0,76 0,77 0,81 1,00
Morgan AD 0,59 0,79 0,90 0,79 0,68 0,83 0,80 0,84 0,24

MLP
Morgan 0,60 0,80 0,84 0,83 0,76 0,77 0,80 0,83 1,00
Morgan AD 0,68 0,84 0,89 0,85 0,79 0,84 0,85 0,87 0,82

Tensorflow
Morgan 0,69 0,85 0,84 0,89 0,85 0,79 0,85 0,86

Figura 39 – Comparação de métricas para diferentes algoritmos e conjuntos de dados
usando o descritor SiRMS. Fonte: Autoria própria.
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Tabela 16 – Métricas calculadas para cada modelo obtido utilizando o Random forest,
SVM, MLP e TensorFlow com o descritor RDKit e o método de validação
cruzada estratificada 5-fold para o conjunto de substâncias com atividade
frente à enzima AChE. Em negrito estão destacados os melhores resultados.

Kappa AUC Sens. PPV Espec. NPV Acur. F-score Cober.
Random forest

Morgan 0,65 0,82 0,87 0,84 0,77 0,82 0,83 0,86 1,00
Morgan AD 0,87 0,92 0,98 0,95 0,86 0,95 0,95 0,97 0,35

SVM
Morgan 0,62 0,81 0,84 0,84 0,78 0,78 0,81 0,84 1,00
Morgan AD 0,80 0,90 0,93 0,92 0,86 0,88 0,91 0,93 0,61

MLP
Morgan 0,60 0,80 0,86 0,82 0,74 0,79 0,81 0,84 1,00
Morgan AD 0,71 0,85 0,90 0,87 0,80 0,85 0,86 0,89 0,80

Tensorflow
Morgan 0,69 0,84 0,89 0,86 0,8 0,84 0,85 0,87

Figura 40 – Comparação de métricas para diferentes algoritmos e conjuntos de dados
usando o descritor RDKit. Fonte: Autoria própria.

Assim, esta etapa realizou uma avaliação externa dos modelos de classificação QSAR,
usando um conjunto de validação externa e considerando o domínio de aplicabilidade
por meio dos valores de AD. As métricas de desempenho foram calculadas tanto para
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o modelo-base quanto para o modelo com AD, permitindo uma avaliação completa do
desempenho do modelo em tarefas de classificação.

O teste de permutação foi realizado visando avaliar a significância estatística do
desempenho dos modelos de classificação em relação ao conjunto de dados aleatório. Logo,
os modelos de classificação treinados foram avaliados em dois cenários diferentes, sendo
eles:

• cenário 1: Dados reais: a métrica de avaliação utilizada foi a acurácia, responsável
por medir a precisão das previsões do modelo com base nos dados reais. O desempenho
do modelo foi avaliado usando o escore (pontuações) real(is).

• cenário 2: Dados aleatórios (Random): um conjunto de dados aleatório foi criado
com a mesma quantidade de amostras e características, porém sem correlação entre
eles. Esse conjunto de dados aleatórios também foi dividido em dois conjuntos usando
a validação cruzada estratificada (Stratified K-Fold) com 2 dobras. O desempenho
dos modelos foi, assim, avaliado usando as pontuações geradas a partir desse conjunto
aleatório (score_rand).

Assim, para determinar se o desempenho do modelo com dados reais era estatis-
ticamente significativo ao comparar com o desempenho obtido com dados aleatórios, foi
realizado um teste de permutação (OJALA; GARRIGA, 2010).

Esse teste consistiu em embaralhar (permutar) as etiquetas das amostras várias vezes
(neste caso, 10 vezes) e calcular a métrica de avaliação (acurácia) para cada permutação
(Tabela 17 e Figura 41). Essa ação resultou na criação de uma distribuição das pontuações
de permutação, que representavam o desempenho por acaso. O p-valor foi calculado como
a proporção de pontuações de permutação que eram iguais ou melhores do que o escore
real.

Um p-valor muito pequeno, geralmente menor que 0,05, indicaria que o desempenho
dos modelos com os dados reais era estatisticamente significativo em comparação com o
desempenho aleatório. Portanto, o teste de permutação permitiu avaliar se os modelos
apresentaram um desempenho estatisticamente significativo em relação aos dados reais,
em comparação com os dados puramente aleatórios.



96

Tabela 17 – Teste de permutação

Descritores Algoritmo True score Média per. p-valor
Morgan Random Forest 0,84 0,5 0.0910
Morgan Multilayer Perceptron 0,86 0,5 0.0802
Morgan SVM 0,87 0,5 0.0901
SiRMS Random Forest 0,90 0,5 0.0802
SiRMS Multilayer Perceptron 0,91 0,5 0.0808
SiRMS SVM 0,90 0,5 0.0802
RDKit Random Forest 0,85 0,5 0.0902
RDKit Multilayer Perceptron 0,90 0,5 0.0801
RDKit SVM 0,92 0,5 0.0803

Figura 41 – Gráficos que ilustram os testes de permutação. Fonte: Autoria própria.

Os descritores são uma ferramenta importante para a análise de dados químicos e
biológicos, permitindo a representação de moléculas e substâncias de forma estruturada
(XUE; BAJORATH, 2000). Neste estudo, analisamos o desempenho de três modelos de
aprendizado de máquina diferentes, aplicando esses descritores:

• Descritores Morgan:

– Random Forest: o modelo obteve um “True score” de 0,84, indicando um
desempenho razoável. No entanto, destaca-se que o valor de “p-value” foi de
0,0910, sugerindo que esse resultado pode não ser estatisticamente significativo.
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– MLP: o modelo obteve um desempenho um pouco melhor, com um “True
score” de 0,86. O valor de “p-value” foi de 0,0802, indicando uma melhora
estatisticamente significativa em relação ao Random Forest.

– SVM: o modelo obteve o melhor desempenho, com um “True score” de 0,87. No
entanto, o valor de “p-value” foi de 0,0901, sugerindo que, apesar do desempenho
superior, a diferença em relação ao Random Forest pode não ser estatisticamente
significativa.

• Descritores SiRMS:

– Random Forest: o modelo obteve um desempenho sólido, com um “True score”
de 0,90. O valor de “p-value” foi de 0,0802, sugerindo que esse resultado é
estatisticamente significativo.

– MLP: o modelo também teve um desempenho muito bom, com um “True
score” de 0,91. O valor de “p-value” foi de 0,0808, indicando uma melhoria
estatisticamente significativa em relação ao Random Forest.

– SVM: o modelo obteve um desempenho consistente, com um “True score”
de 0,90. O valor de “p-value” foi de 0,0802, sugerindo que esse resultado é
estatisticamente significativo.

• Descritores RDKit:

– Random Forest: o modelo teve um desempenho razoável, com um “True score”
de 0,85. O valor de “p-value” foi de 0,0902, indicando que o resultado pode não
ser estatisticamente significativo.

– MLP: o modelo obteve um desempenho muito bom, com um “True score”
de 0,90. O valor de “p-value” foi de 0,0801, indicando que esse resultado é
estatisticamente significativo.

– SVM: o modelo teve o melhor desempenho, com um “True score” de 0,92. O
valor de “p-value” foi 0,0803, sugerindo que esse resultado é estatisticamente
significativo.

5.4 Triagem virtual em bases de dados químicos

5.4.1 Execução do procedimento de triagem virtual

Para cada conjunto de descritores (Morgan, RDKit e SiRMS), quatro algoritmos
de classificação foram aplicados (SVM, MLP, Random Forest e TensorFlow - Figura 42)
em uma grande base de dados, composta por 101.097 amostras, obtidas da PubChem.
Destaca-se que cada conjunto de descritores possuía diferentes dimensões, com 2048, 209 e
1764 características, respectivamente.
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Figura 42 – Classificação usando o SVM, MLP, Random Forest e TensorFlow. Fonte:
Autoria própria.

A Tabela 18 apresenta os valores considerados apenas quando estão dentro do
domínio de aplicabilidade, com um nível de confiança superior ao limite de 70% (SUSHKO,
2011).

Tabela 18 – Consenso de modelos (número de compostos)

Conjunto de Descritores SVM MLP Random Forest TensorFlow Consenso AD
Morgan 45.152 41.198 41.060 37.505 6.455
RDKit 56.229 89.058 17.183 35.748 3.773
SiRMS 53.447 89.156 25.636 20.438 3.629

• Em relação aos Descritores Morgan:

– o SVM classificou 45.152 amostras como ativas dentro do domínio de aplicabili-
dade.

– o MLP classificou 41.198 amostras como ativas dentro do domínio de aplicabili-
dade.

– o Random Forest classificou 41.060 amostras como ativas dentro do domínio de
aplicabilidade.

– o TensorFlow classificou 37.505 amostras como ativas.
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– houve um consenso entre os modelos SVM, SVM AD, Random Forest, Random
Forest AD, MLP e TensorFlow, com 6.455 amostras classificadas como ativas
(Figura 43).

• Para os Descritores RDKit:

– o SVM classificou 56.229 amostras como ativas dentro do domínio de aplicabili-
dade.

– o MLP classificou 89.058 amostras como ativas dentro do domínio de aplicabili-
dade.

– o Random Forest classificou 17.183 amostras como ativas dentro do domínio de
aplicabilidade.

– o TensorFlow classificou 35.748 amostras como ativas.

– houve um consenso entre os modelos SVM, SVM AD, Random Forest, Random
Forest AD, MLP e TensorFlow, com 3.773 amostras classificadas como ativas
(Figura 43).

• Para os Descritores SiRMS:

– o SVM classificou 53.447 amostras como ativas dentro do domínio de aplicabili-
dade.

– o MLP classificou 89.156 amostras como ativas dentro do domínio de aplicabili-
dade.

– o Random Forest classificou 25.636 amostras como ativas dentro do domínio de
aplicabilidade.

– o TensorFlow classificou 20.438 amostras como ativas.

– houve um consenso entre os modelos SVM, SVM AD, Random Forest, Random
Forest AD, MLP e TensorFlow, com 3.629 amostras classificadas como ativas
(Figura 43).
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Figura 43 – Consenso de classificação. Fonte: Autoria própria.

5.4.2 Busca por similaridade

O KNIME Analytics foi utilizado para realizar a busca por similaridade (Figura
44) baseada em quatro compostos ativos (Figura 45) disponíveis na literatura, conforme
detalhamento obtido do artigo de referência (GROSSBERG, 2003). Essa pesquisa foi
realizada em uma base de dados altamente precisa, que continha um total de 117.379
compostos.
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Figura 44 – Uso do KNIME Analytics para realizar a busca por similaridade. Fonte:
Autoria própria.

Figura 45 – Quatro compostos ativos disponíveis na literatura: Rivastigmine (PUBCHEM,
2023c), Tacrine (PUBCHEM, 2023d), Donepezil (PUBCHEM, 2023a) e Ga-
lantamine (PUBCHEM, 2023b). Fonte: Autoria própria.

Para realizar essa busca, foi utilizado o RDKit para extrair os descritores moleculares
e, posteriormente, calcular o coeficiente de similaridade com base na distância usando
a Similaridade de Tanimoto (MAGGIORA et al., 2014), com um filtro de faixa de 0
a 0,9999999 para retornar as correspondências mais próximas. Como resultado final
desse processo, um total de 5.837 compostos foram identificados e selecionados, os quais
apresentaram uma similaridade significativa com os quatro compostos de referência.
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5.4.3 Previsão de consenso dos compostos com os modelos obtidos

Após a busca por similaridade, os dados de Coeficiente de Tanimoto (Similarity) e do
Vizinho Mais Próximo (Nearest Neighbor) foram mesclados nos resultados de consenso entre
os descritores (Tabela 19). Esses resultados apresentam as informações sobre os compostos
químicos mais similares identificados em relação ao composto de referência (Tacrine),
utilizando o coeficiente de Tanimoto na busca por similaridade (MAGGIORA et al., 2014).
Cada linha representa um composto químico (identificado pelo CID - Chemical Identifier)
e inclui a medida de similaridade em relação ao composto de referência, juntamente com a
sua estrutura molecular simplificada (CanonicalSMILES) e o composto mais semelhante
encontrado (Nearest Neighbor). A similaridade varia de acordo com a estrutura molecular
dos compostos, sendo que valores mais elevados indicam uma maior similaridade.

Tabela 19 – Consenso com a similaridade
ID CID CanonicalSMILES Nearest Neighbor Similarity (%)
0 165748451 CC(C)(C)c1ccccc1C(=O)C(F)F Donepezil 0.262530
1 126973612 CC(C)c1ccccc1C(=O)C(F)F Donepezil 0.253333
2 118729284 CN(CCCCCCN1C(=O)c2ccccc2C1=O)Cc1ccccc1 Donepezil 0.314754
3 21994169 O=C1NC(=O)c2c(CCCN3CCC(Cc4ccccc4)CC3)cccc21 Donepezil 0.385714
4 22132546 Nc1ccc2c(c1)CN(CCCCN1C(=O)c3ccccc3C1=O)CC2 Donepezil 0.347181
5 12004040 c1ccc2ncc(Nc3ncnc4c3CCN(CC3CCCCC3)C4)cc2c1 Galantamine 0.412822
6 54542240 O=C1NC(=O)c2c(CCCN3CCc4ccccc4C3)cccc21 Donepezil 0.369673
7 54403061 O=C1NC(=O)c2c(CCCCN3CCc4ccccc4C3)cccc21 Donepezil 0.395980
8 60259671 CC1CCCN(Cc2ccc(CNC(=O)c3ccc4c(c3)C(=O)NC4=O)cc... Donepezil 0.332971
9 119536775 O=C(NCCC1CCNC1)c1cccc(CN2C(=O)c3ccccc3C2=O)c1 Donepezil 0.322513
10 66587765 CCN(CC)c1cccc(-c2cc(C(=O)NC3CCCc4ccccc43)ccn2)c1 Galantamine 0.399876
11 22588138 CCCCC(CC)CNC(=O)CCCCCn1c(=O)[nH]c2ccccc2c1=O Galantamine 0.326582
12 120179720 CNCCC1CCN(C(=O)c2ccc3c(c2)CCC(=O)N3)CC1 Donepezil 0.380859
13 17956492 Cc1cc(N(C)C(=O)NCCN2CCC(Cc3ccccc3)CC2)c2ccccc2n1 Tacrine 0.465433
14 647903 CCCCc1nc2ccccc2c(NC(=O)CN2CCN(C)CC2)c1CCC Tacrine 0.714721
15 1099160 CCCc1nc2ccccc2c(NC(=O)CNC2CCCCC2)c1CC Tacrine 0.674723
16 4218057 CCCc1nc2ccccc2c(NC(=O)C[NH+]2CCCCCC2)c1CC Tacrine 0.675076
17 4990629 CCCc1nc2ccccc2c(NC(=O)C[NH+]2CCCCC2)c1CC Tacrine 0.677126
18 6966754 CCCc1nc2ccccc2c(NC(=O)C[NH2+]C2CCCCC2)c1CC Tacrine 0.674723
19 133412317 CCCc1cc(NCCC2CCN(C(C)=O)CC2)c2ccccc2n1 Tacrine 0.548712
20 55964361 CC1CC(C)CN(Cc2ccc(CNC(=O)C=Cc3cccnc3)cc2)C1 Donepezil 0.302455
21 119438861 CCNCc1ccccc1NC(=O)C1CCCN(C(=O)c2ccncc2)C1 Donepezil 0.331806
22 121108747 CCCc1ccc(C(=O)NCC2CCN(c3ccncc3)CC2)cc1 Donepezil 0.307607
23 14783862 Cc1ccccc1C(=O)NCCC1CCN(Cc2ccccc2)CC1 Donepezil 0.345588
24 56396266 CC1CC(C)CN(Cc2ccc(CNC(=O)c3cccc(F)c3F)cc2)C1 Donepezil 0.309979
25 38401175 Cc1ccc(F)cc1C(=O)NCc1ccc(CN2CCC(C)CC2)cc1 Donepezil 0.332594
26 46465375 Cc1ccccc1C(=O)NCC(=O)NCc1ccc(CN2CCCC(C)C2)cc1 Donepezil 0.331089
27 55714142 CNC(=O)c1ccc(C=CC(=O)NCc2ccccc2CN2CCCC(C)C2)cc1 Donepezil 0.329361
28 84422326 CN(C)CCCNC(=O)c1ccc(CNC(=O)c2ccc(C(C)(C)C)cc2)cc1 Donepezil 0.242925
29 95809500 O=C(c1ccncc1)N1CCC(c2cccc(Cc3ccccc3)n2)CC1 Galantamine 0.307245
30 95816347 Cc1cc(Cc2ccccc2)cc(C2CCCN(C(=O)c3ccncc3)C2)n1 Galantamine 0.348428
31 110249502 O=C(c1ccncc1)N1CCCC(c2cccc(Cc3ccccc3)n2)C1 Galantamine 0.346926
32 109236248 CC1CCCN(c2cncc(C(=O)NCCc3ccccc3F)c2)C1 Galantamine 0.317481
33 109227211 CC1CCN(c2cncc(C(=O)NCCc3ccccc3F)c2)CC1 Galantamine 0.311528
34 109103313 O=C(NCCC1=CCCCC1)c1cncc(C(=O)NCc2ccc(F)cc2)c1 Galantamine 0.255319
35 37027068 O=C(Nc1cccc(F)c1)C1CCN(C(=O)c2cccnc2)CC1 Donepezil 0.324111
36 46547516 O=C(NCc1cccnc1)C1CCCN(C(=O)Cc2ccccc2)C1 Donepezil 0.327818

Em seguida, foi realizado o consenso, selecionando dentre os 37 compostos, aqueles
que apresentaram uma similaridade superior a 50% (0.50) - Tabela 20.
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Tabela 20 – Consenso com a similaridade

CID CanonicalSMILES Nearest
Neighbor

Similarity
(%)

647903 CCCCc1nc2ccccc2c(NC(=O)CN2CCN(C)CC2)c1CCC Tacrine 0.714721
1099160 CCCc1nc2ccccc2c(NC(=O)CNC2CCCCC2)c1CC Tacrine 0.674723
4218057 CCCc1nc2ccccc2c(NC(=O)C[NH+]2CCCCCC2)c1CC Tacrine 0.675076
4990629 CCCc1nc2ccccc2c(NC(=O)C[NH+]2CCCCC2)c1CC Tacrine 0.677126
6966754 CCCc1nc2ccccc2c(NC(=O)C[NH2+]C2CCCCC2)c1CC Tacrine 0.674723
133412317 CCCc1cc(NCCC2CCN(C(C)=O)CC2)c2ccccc2n1 Tacrine 0.548712

Os resultados apresentam os hits finais obtidos por consenso entre quatro algoritmos
e três descritores diferentes, alcançados por meio da busca por similaridade usando o
Coeficiente de Tanimoto (Tabela 21). Cada hit foi assim detalhado:

• CID (Chemical Identifier):

– o identificador único do composto químico.

• CanonicalSMILES (Simplified Molecular Input Line Entry System):

– uma representação simplificada da estrutura molecular do composto químico
em formato de texto.

• Nearest Neighbor (Vizinho Mais Próximo):

– o composto químico mais semelhante encontrado na busca por similaridade.

• Similaridade (Coeficiente de Tanimoto):

– uma medida de quão similar o composto químico encontrado é em relação ao
composto de referência. Quanto mais próximo de 1, maior a similaridade.

Abaixo estão alguns exemplos dos hits finais identificados (Figura 46):

• CID 647903:

– Canonical SMILES: CCCCc1nc2ccccc2c(NC(=O)CN2CCN(C)CC2)c1CCC

– Nearest Neighbor : Tacrine

– Similaridade: 0.714721

– Link PubChem: pubchem.ncbi.nlm.nih.gov/compound/647903

• CID 1099160:

– Canonical SMILES: CCCc1nc2ccccc2c(NC(=O)CNC2CCCCC2)c1CC

– Nearest Neighbor : Tacrine

https://pubchem.ncbi.nlm.nih.gov/compound/647903
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– Similaridade: 0.674723

– Link PubChem: pubchem.ncbi.nlm.nih.gov/compound/1099160

• CID 4218057:

– Canonical SMILES: CCCc1nc2ccccc2c(NC(=O)C[NH+]2CCCCCC2)c1CC

– Nearest Neighbor : Tacrine

– Similaridade: 0.675076

– Link PubChem: pubchem.ncbi.nlm.nih.gov/compound/4218057

• CID 4990629:

– Canonical SMILES: CCCc1nc2ccccc2c(NC(=O)C[NH+]2CCCCC2)c1CC

– Nearest Neighbor : Tacrine

– Similaridade: 0.677126

– Link PubChem: pubchem.ncbi.nlm.nih.gov/compound/4990629

• CID 6966754:

– Canonical SMILES: CCCc1nc2ccccc2c(NC(=O)C[NH2+]C2CCCCC2)c1CC

– Nearest Neighbor : Tacrine

– Similaridade: 0.674723

– Link PubChem: pubchem.ncbi.nlm.nih.gov/compound/6966754

• CID 133412317:

– Canonical SMILES: CCCc1cc(NCCC2CCN(C(C)=O)CC2)c2ccccc2n1

– Nearest Neighbor : Tacrine

– Similaridade: 0.548712

– Link PubChem: pubchem.ncbi.nlm.nih.gov/compound/133412317

Tabela 21 – Consenso final (número de compostos)

Conjunto
de Descri-
tores

SVM MLP Random
Forest TensorFlow Consenso

AD
Consenso
com Rigor

Consenso
da Similari-
dade

Morgan 45.152 41.198 41.060 37.505 6.455
37 6RDKit 56.229 89.058 17.183 35.748 3.773

SiRMS 53.447 89.156 25.636 20.438 3.629

https://pubchem.ncbi.nlm.nih.gov/compound/1099160
https://pubchem.ncbi.nlm.nih.gov/compound/4218057
https://pubchem.ncbi.nlm.nih.gov/compound/4990629
https://pubchem.ncbi.nlm.nih.gov/compound/6966754
https://pubchem.ncbi.nlm.nih.gov/compound/133412317
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Figura 46 – Compostos finais identificados após realizar a triagem virtual. Fonte: Autoria
própria.

5.5 Discussões

Após uma análise dos resultados, destacam-se alguns pontos:

1. principais resultados:

• significância estatística: os testes de permutação nos permitiram calcular o quão
provável é que a performance dos modelos tenha sido alcançada por acaso. Essa
probabilidade é representada pelos valores de p (p-values) associados a cada
modelo e conjunto de descritores. Em geral, um p-values baixo (geralmente
<0,05) indica que os resultados não são devido ao acaso.
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• desempenho do modelo: observamos variações significativas no desempenho dos
modelos em diferentes conjuntos de descritores. Por exemplo, o modelo SVM
obteve uma alta acurácia com descritores RDKit, enquanto o MLP obteve uma
alta acurácia com os descritores Morgan.

• domínio de aplicabilidade (AD): incorporamos o conceito de Domínio de Apli-
cabilidade (AD), que se refere à capacidade de um modelo fazer previsões
confiáveis em uma determinada região do espaço de recursos. Essa avaliação
foi realizada usando a técnica de validação cruzada com um limiar de AD. Os
modelos que não atenderam ao limiar, foram considerados fora do domínio de
aplicabilidade.

2. impacto do AD em relação aos algoritmos:

• a inclusão do conceito de AD teve um impacto significativo nos resultados dos
algoritmos, melhorando as métricas em uma média de 20-25%.

• ao comparar os modelos com e sem AD, foi possível observar uma melhora subs-
tancial nas métricas, como Sensibilidade e Especificidade, com ganhos médios
de 20-25%, demonstrando a importância do AD para melhorar a capacidade
dos modelos em classificar de forma precisa as amostras dentro do seu domínio
de aplicação (SUSHKO, 2011).

• é importante destacar que a melhoria variou entre os algoritmos, sendo mais
evidente nos modelos Random Forest e SVM, onde a inclusão do AD resultou
em média de aprimoramento de 25-30%. Essa descoberta destaca ainda mais a
relevância do AD como uma ferramenta essencial para otimizar o desempenho
dos modelos em contextos específicos (BASKIN; KIREEVA; VARNEK, 2010).

3. desempenho do TensorFlow em relação aos algoritmos:

• o TensorFlow também apresentou bons resultados, com desempenho semelhante
ou superior em várias métricas em comparação com os modelos Random Forest,
SVM e MLP, com ganhos médios de 10-15%.

• esses resultados destacam que o TensorFlow é uma escolha robusta para as
tarefas de classificação, fornecendo resultados competitivos em diversas métricas.

4. o benefício do AD em relação ao TensorFlow:

• a inclusão do AD melhorou os resultados em termos de Sensibilidade e Especifi-
cidade em comparação com o TensorFlow, com ganhos médios de 15-20%.

• esses resultados ressaltam que o AD desempenha um papel fundamental na
melhoria da capacidade dos modelos de reconhecer amostras relevantes dentro
do domínio de aplicabilidade.
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Em síntese, a inserção do AD beneficiou, significativamente, o desempenho dos
algoritmos de aprendizado de máquina, melhorando a capacidade de classificar amostras
dentro do domínio de aplicabilidade com ganhos médios de 20-25% nas métricas relevantes
(BASKIN; KIREEVA; VARNEK, 2010; ALAMRO et al., 2023). Além disso, o TensorFlow
se destacou como uma alternativa eficaz e competitiva em relação aos algoritmos tradicio-
nais, demonstrando resultados consistentes com ganhos médios de 10-15% nas métricas. A
escolha entre os modelos deve depender das métricas específicas mais relevantes para a
aplicação, mas considerar o AD é crucial para melhorar a especificidade e a sensibilidade
dos modelos.

5.5.1 Avaliação dos modelos em uma base de dados externa

Após treinar e validar os modelos, realizamos uma busca em uma grande base de
dados (com 101.097 amostras) usando os modelos treinados. Essa avaliação resultou em
algumas conclusões significativas:

• desempenho em grandes bases de dados: os modelos foram capazes de classificar com
sucesso uma grande quantidade de amostras presentes na base de dados externa.
Esse feito ressalta a capacidade dos modelos em lidar com conjuntos de dados de
grande escala.

• resultados de consenso: além disso, realizamos o cálculo dos resultados de consenso
entre os quatro algoritmos (SVM, MLP, Random Forest e TensorFlow) em três con-
juntos de descritores diferentes. Essa abordagem nos permitiu identificar compostos
químicos que foram classificados como ativos em consenso por todos os modelos,
um procedimento importante para ressaltar as descobertas consistentes e confiáveis
(ALAMRO et al., 2023).

• busca por similaridade (Tanimoto): outro aspecto importante da avaliação foi a
execução de busca por similaridade usando o coeficiente de Tanimoto para identifi-
car compostos químicos semelhantes aos de referência (Tacrine). Essa abordagem
desempenha um papel importante em aplicações voltadas para a descoberta de
novos compostos farmacêuticos, ampliando o escopo das possibilidades de pesquisa
(MAGGIORA et al., 2014; GROSSBERG, 2003).

5.5.2 Implicações práticas e potencial de aplicação

Por fim, é importante discutir as implicações práticas desses resultados. Os modelos
de machine learning e deep learning que foram treinados revelaram o seu valor quando
aplicados a uma grande base de dados, proporcionando a capacidade de triagem de
compostos químicos potencialmente ativos. Esse processo economiza tempo e recursos em
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experimentos laboratoriais, priorizando compostos promissores para testes subsequentes
(BAO et al., 2023).

Além disso, a estratégia de busca por similaridade usando o coeficiente de Tanimoto
é uma ferramenta importante para identificação de compostos químicos que compartilham
características com um composto de referência, o que pode ser útil em pesquisa farmacêutica
e química medicinal (MAGGIORA et al., 2014; FERREIRA; ANDRICOPULO, 2018).

Portanto, este trabalho discutiu desde os testes de permutação para avaliação de
modelos até a aplicação prática desses modelos em grandes bases de dados e busca por
similaridade, destacando a relevância dessas técnicas na descoberta de novos compostos
químicos com potencial atividade farmacológica.
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6 CONCLUSÕES

Este trabalho abordou a aplicação de modelos de aprendizado de máquina e
aprendizado profundo de máquina em três conjuntos de descritores diferentes (Morgan,
RDKit e SiRMS) em uma grande base de dados químicos para classificação de amostras
como ativas ou inativas dentro do domínio de aplicabilidade. Vários modelos, incluindo o
SVM, MLP, Random Forest e TensorFlow, foram treinados e validados para cada conjunto
de descritores.

As principais descobertas e conclusões deste estudo podem ser sintetizadas da
seguinte forma:

• desempenho variável por conjunto de descritores: os modelos tiveram desempenhos
variáveis em cada conjunto de descritores. Por exemplo, os descritores Morgan
resultaram em um menor número de amostras classificadas como ativas, enquanto os
descritores RDKit tiveram um número maior de amostras ativas.

• diferenças nos modelos: cada modelo apresentou desempenho diferente para cada
conjunto de descritores, ressaltando a importância da seleção adequada de modelos
para conjuntos de descritores específicos.

• consenso entre modelos: foi observado que, em todos os conjuntos de descritores, um
número significativo de amostras foi classificado como ativas em consenso por todos
os modelos, sugerindo a robustez dessas amostras e sua importância.

• importância da escolha de descritores: a escolha adequada de descritores revelou-
se crítica para o desempenho dos modelos, uma vez que diferentes conjuntos de
descritores capturam informações químicas de maneira única, resultando em diferentes
resultados.

• potencial de aplicações futuras: os modelos treinados e os resultados obtidos têm po-
tencial de aplicação em triagem de compostos químicos, descoberta de medicamentos
e pesquisa farmacêutica, onde a classificação precisa de compostos como ativos ou
inativos é fundamental.

• necessidade de validação externa: embora os modelos tenham demonstrado bons
desempenhos nos dados de validação interna, a validação externa em conjuntos
de dados independentes foi essencial para avaliar verdadeiramente a robustez dos
modelos.
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• considerações éticas e de segurança: a aplicação desses modelos na indústria far-
macêutica e química deve ser realizada com considerações éticas e de segurança,
garantindo que os compostos identificados como ativos sejam seguros e eficazes.

Portanto, esta análise demonstrou que modelos de aprendizado de máquina e
aprendizado profundo de máquina têm o potencial de melhorar a triagem e a classificação
de compostos químicos em grandes bases de dados. No entanto, a escolha criteriosa dos
descritores e modelos é fundamental, assim como a validação externa é necessária antes
da aplicação prática. A pesquisa continuada nesse campo visa aprimorar ainda mais a
precisão e a eficácia dos modelos, contribuindo para avanços significativos nas áreas de
química e farmacologia.
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