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RESUMO

Pedrosa, L. Modelagem QSAR (Relacao Quantitativa Estrutura-Atividade),
busca por similaridade e triagem virtual para a identificacao de inibidores de
Acetilcolinesterase (AChE) para a doenga de Alzheimer. 2023. 118p. Monografia
(MBA em Inteligéncia Artificial e Big Data) - Instituto de Ciéncias Matemaéticas e de
Computacao, Universidade de Sao Paulo, Sao Carlos, 2023.

A doenca de Alzheimer representa um desafio consideravel tanto no campo da Inteligéncia
Artificial (IA) quanto na pesquisa em ciéncias da saude. Nesse cenario desafiador, esta
pesquisa foi direcionada ao desenvolvimento de abordagens terapéuticas inovadoras para
combater essa doenca neurodegenerativa. Entre essas abordagens, destaca-se a aplicacao da
Inteligéncia Artificial, em particular a modelagem QSAR (Relagdo Quantitativa Estrutura-
Atividade), combinada com técnicas de aprendizado de maquina (machine learning) e
aprendizado profundo (deep learning). A enzima acetilcolinesterase (AChE) desempenha
um papel crucial na degradagdo da acetilcolina no cérebro, afetando diretamente a funcao
cognitiva. Inibir a AChE pode levar a acumulacéo de acetilcolina, o que, por sua vez, pode
melhorar a transmissao neural e aliviar os sintomas da doenca de Alzheimer. Neste estudo,
varios modelos QSAR foram desenvolvidos utilizando técnicas de IA, como SVM (Maquina
de Vetores Suporte), Random Forest, Multilayer Perceptron e TensorFlow Keras. Além
disso, foram usados descritores moleculares para capturar as caracteristicas especificas
dos compostos quimicos, como Fingerprints de Morgan, SiRMS (Simplex Representation
of Molecular Structure) e RDKit. Esses modelos foram treinados e avaliados por meio
de validagao cruzada estratificada, utilizando métricas estatisticas para determinar a sua
eficacia. Os modelos mais promissores, com base em seus hiperparametros e desempenho
na validacao cruzada, foram selecionados para uma etapa adicional de triagem virtual. Essa
etapa envolveu a busca por compostos quimicamente semelhantes aos candidatos iniciais,
a fim de identificar novos inibidores da enzima AChE. Essa abordagem de modelagem
e triagem virtual, que combina resultados de modelos e busca por similaridade, tem o
potencial de contribuir significativamente para a descoberta de novos compostos promissores
no tratamento e prevencao da doenca de Alzheimer. A integracao de técnicas de IA,
modelagem molecular e triagem virtual oferece uma estratégia inovadora para abordar os
desafios associados a doenca de Alzheimer, e os resultados deste estudo tém o potencial de

impactar positivamente o desenvolvimento de terapias para essa condigao debilitante.

Palavras-chave: Relagao Quantitativa Estrutura-Atividade. Classificagdo Binaria. Busca
por Similaridade. Triagem Virtual. Aprendizado de Maquina. Aprendizado Profundo de

Maéaquina. Doenca de Alzheimer.






ABSTRACT

Pedrosa, L. QSAR (Quantitative Structure-Activity Relationship) modeling,
similarity search, and virtual screening for identifying Acetylcholinesterase
(AChE) inhibitors for Alzheimer’s disease. 2023. 118p. Monograph (MBA in
Artificial Intelligence and Big Data) - Instituto de Ciéncias Matematicas e de
Computacao, Universidade de Sao Paulo, Sao Carlos, 2023.

Alzheimer’s disease represents a considerable challenge in both the field of Artificial
Intelligence (AI) and health sciences research. In this challenging scenario, this research was
aimed at developing innovative therapeutic approaches to combat this neurodegenerative
disease. Among these approaches, the application of Artificial Intelligence stands out,
in particular QSAR (Quantitative Structure-Activity Relationship) modeling, combined
with machine learning and deep learning techniques. The enzyme acetylcholinesterase
(AChE) plays a crucial role in the breakdown of acetylcholine in the brain, directly affecting
cognitive function. Inhibiting AChE can lead to the accumulation of acetylcholine, which
in turn can improve neural transmission and alleviate the symptoms of Alzheimer’s disease.
In this study, several QSAR models were developed using Al techniques such as SVM,
Random Forest, Multilayer Perceptron and TensorFlow Keras. Furthermore, molecular
descriptors were used to capture the specific characteristics of chemical compounds, such as
Morgan Fingerprints, SIRMS and RDKit. These models were trained and evaluated through
stratified cross-validation, using statistical metrics to determine their effectiveness. The
most promising models, based on their hyperparameters and cross-validation performance,
were selected for an additional virtual screening step. This step involved the search for
compounds chemically similar to the initial candidates, in order to identify new inhibitors
of the AChE enzyme. This virtual modeling and screening approach, which combines
model outputs and similarity searching, has the potential to contribute significantly to the
discovery of promising new compounds in the treatment and prevention of Alzheimer’s
disease. The integration of Al techniques, molecular modeling and virtual screening offers
an innovative strategy for addressing the challenges associated with Alzheimer’s disease,
and the results of this study have the potential to positively impact the development of

therapies for this debilitating condition.

Keywords: Quantitative Structure-Activity Relationship. Binary Classification. Similarity

Search. Virtual Screening. Machine Learning. Deep Machine Learning. Alzheimer’s Disease.
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1 INTRODUCAO

1.1 Contextualizacao

Alzheimer é uma das doencas neurodegenerativas mais comuns e é uma das princi-
pais causas de deméncia em todo o mundo. Ela afeta, principalmente, a memoria e outras
fungdes cognitivas, como a capacidade de pensar, linguagem e tomar decisoes. A sua
prevaléncia tem aumentado em funcao do envelhecimento da populagao. A sua patologia
¢ caracterizada pela formacao de placas de beta-amiloide no cérebro, as quais podem
interferir nas fungoes cognitivas e levar a perda progressiva de memoéria, dificuldades
de comunicacao, confusao, entre outros, e pode levar a uma completa dependéncia de
cuidadores (DELANOGARE et al., 2019).

Uma das abordagens terapéuticas para tratamento da doenca de Alzheimer é
a inibigdo da enzima acetilcolinesterase (AChE), que estd diretamente relacionada a
degradacao da acetilcolina no cérebro, influenciando a fungao cognitiva. A acumulacao de
acetilcolina, resultante da inibicdo da AChE, tem o potencial de melhorar a transmissao
neural, o que pode aliviar os sintomas associados a doenca. Dessa forma, uma abordagem

promissora para o tratamento dessa doenca inclui a identificacdo de novos compostos que
sejam capazes de inibir essa enzima (DHAMODHARAN; MOHAN, 2022).

Nesse contexto, os modelos QSAR (Quantitative Structure-Activity Relationship,
ou Relagao Quantitativa entre Estrutura-Atividade) tém se mostrado uma ferramenta
importante para a descoberta de novos inibidores da AChE, fornecendo uma abordagem
computacional eficiente e econdmica para avaliar a atividade desses compostos (SHARMA;
SHARMA, 2018).

Esses modelos conseguem prever a atividade biologica de compostos a partir de
suas estruturas moleculares e, portanto, podem identificar novos candidatos a inibidores
das enzimas de forma mais rapida e eficiente (PANTELEEV; GAO; JIA, 2018).

No entanto, ainda existem desafios a serem enfrentados para melhorar a precisao e a
confiabilidade dos modelos QSAR. Um deles seria determinar quais descritores moleculares,
algoritmos de aprendizado de maquina e aprendizado profundo de maquina sao os mais
adequados para criar modelos QSAR eficientes e precisos para a predicao de atividade de
inibidores da AChE (PATEL et al., 2020; BAO et al., 2023).

Adicionalmente, a criacao de QSAR que combina diferentes métodos pode aumentar
a precisdo das previsoes de atividade biolégica de moléculas candidatas a farmacos.
Essa abordagem pode incluir, por exemplo, o uso de diferentes tipos de descritores
moleculares (como Fingerprints de Morgan, SIRMS e RDKit), diferentes métodos de

selecao de descritores e diferentes algoritmos de aprendizado de méquina e aprendizado
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profundo. A principal finalidade é aproveitar as vantagens de cada método para gerar um
modelo de previsao de atividade bioldgica mais preciso e confiavel, que possa ser utilizado

no desenvolvimento de novos farmacos (JANG et al., 2018).

1.2 Justificativa e motivacao

Apesar de ser uma doenga comum, nao hd uma cura definitiva para o Alzheimer e
os tratamentos atuais podem apenas amenizar os sintomas, mas nao impedem a progressao
da doenca. Segundo a Organizagdo Mundial da Satde (OMS), a doenga de Alzheimer é a
forma mais comum de deméncia, respondendo por cerca de 60 a 70% dos casos. Estima-se

que cerca de 50 milhoes de pessoas em todo o mundo tenham deméncia, e a cada ano sao
registrados cerca de 10 milhoes de novos casos (ORGANIZATION, 2021).

Esses dados destacam a importancia da busca por novas terapias para a doenga de
Alzheimer, e a identificacdo de novos compostos que possam inibir a AChE é uma das
estratégias promissoras na luta contra essa doenca (DHAMODHARAN; MOHAN;, 2022).

A utilizacao de técnicas de aprendizado de maquina e aprendizado profundo tém
se destacado como uma abordagem promissora na busca por novos compostos que possam
auxiliar no tratamento da doencga de Alzheimer. No entanto, a escolha adequada dos
algoritmos e dos descritores moleculares utilizados é crucial para a obtencao de modelos
precisos e confidveis (NEVES et al., 2018).

Outro fator fundamental é a validacao dos modelos QSAR para garantir a eficacia e
confiabilidade desses modelos na identificacao de novos compostos com potencial atividade

inibitoria, e pode contribuir, significativamente, para o desenvolvimento de novas terapias

para a doenga de Alzheimer (CARPENTER; HUANG, 2018).

1.3 Problema de pesquisa

Esta pesquisa visa avaliar e combinar diferentes algoritmos de aprendizado de
maquina e aprendizado profundo, utilizando diferentes tipos de descritores moleculares,
na tarefa de prever a atividade de inibidor da AChE para a doencga de Alzheimer. A
escolha dos algoritmos e descritores moleculares adequados pode impactar na qualidade
dos modelos gerados e na eficicia da identificagdo de novos compostos (DHAMODHARAN;
MOHAN, 2022).

Compreender quais algoritmos e descritores moleculares sdo mais eficazes na tarefa
de predicao pode fornecer informagoes valiosas para os pesquisadores envolvidos. Outro
ponto importante é que a escolha adequada de algoritmos e descritores moleculares pode
reduzir os custos e o tempo necessarios para identificar novos compostos, tornando o

processo mais eficiente e econémico.
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Assim, a pergunta de pesquisa que este estudo pretendeu responder foi: como
diferentes abordagens de aprendizado de maquina, aprendizado profundo de maquina e
descritores moleculares podem ser combinados para desenvolver modelos QSAR precisos e

eficientes para a predicao de atividade de inibidores da AChE para a doenca de Alzheimer?

A resposta para essa pergunta tem potencial de contribuir com o desenvolvimento
de novas terapias para o tratamento da doenca de Alzheimer, a qual tem sido um grande

desafio para a satude publica.

1.4 Hipotese

Diante do exposto, este trabalho visou provar a seguinte hipotese: a criagao de mo-
delos QSAR, combinando diferentes abordagens de aprendizado de maquina, aprendizado
profundo de méaquina e descritores moleculares, resultara em uma maior capacidade de
generalizagdo e precisao na predi¢ao de atividade de inibidores da AChE para a doenca de
Alzheimer, em comparagao com modelos QSAR criados com abordagens ou descritores
isolados. Além disso, espera-se que a selecao dos melhores modelos, com base em seus
hiperparametros dentro do dominio de aplicabilidade, possam ser utilizados como filtros
moleculares durante triagem virtual, culminando na identificacao de novos compostos

promissores que possam aliviar os sintomas da doenca de Alzheimer.

1.5 Objetivos

O objetivo geral deste estudo ¢é realizar a triagem virtual para a identificacao de
novos compostos inibidores promissores, utilizando diferentes abordagens de aprendizado

de maquina, aprendizado profundo e descritores moleculares como filtros moleculares.

Os objetivos especificos sao:

o criar modelos QSAR usando diferentes abordagens (Support Vector Machine, Ran-
dom Forest, Multilayer Perceptron e TensorFlow Keras) com diferentes descritores
(Fingerprints de Morgan, SIRMS e RDKit) para a predigao de atividade de inibidores
da AChE para a doenca de Alzheimer;

o avaliar a eficicia dos modelos QSAR desenvolvidos por meio da validagao cruzada

estratificada, usando métricas estatisticas apropriadas;

» realizar a busca por similaridade para identificacao de compostos quimicamente

semelhantes aos candidatos iniciais;

 selecionar os melhores modelos, com base em seus hiperparametros dentro do dominio
de aplicabilidade, para serem utilizados como filtro molecular na etapa de triagem

virtual.
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utilizar a abordagem de consenso dos resultados dos modelos e da busca por simi-
laridade para identificagdo de novos compostos inibidores da AChE que possam
ser promissores para o tratamento e prevencao da doenca de Alzheimer durante a

triagem virtual.

Para o alcance desses objetivos, este trabalho foi organizado nos seguintes capitulos:

Capitulo 2.1.6: apresenta os fundamentos tedricos sobre a quimioinformatica para
compreender sobre modelos QSAR, as diferentes abordagens de aprendizado de

maquina adotadas, andlise de similaridade e triagem virtual.
Capitulo 3: apresenta o estado arte sobre o tema de pesquisa.

Capitulo 4: apresenta a proposta deste estudo, incluindo os métodos de como serao

executados.
Capitulo 5: apresenta os resultados encontrados.

Capitulo 6: apresenta as consideragoes finais.
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2 FUNDAMENTACAO TEORICA

Nesta secao é apresentado a fundamentacao conceitual sobre as duas areas envolvi-

das: quimioinformética e aprendizado de maquina.

2.1 Quimioinformatica
2.1.1 Conceitos

Devido a ampliagao do poder computacional das ultimas décadas, assim como
o crescimento exponencial da velocidade de geracao de dados e a necessidade de lidar
com grandes quantidades de informagao quimica/bioldgica, o processo de descoberta de
farmacos foi estimulado a englobar de maneira crescente em seus processos de pesquisa e
desenvolvimento (P&D) abordagens tecnolégicas. Isto culminou no fendémeno conhecido
como explosao de dados ou big data. Neste contexto, o desenvolvimento de ferramentas
capazes de extrair correlagoes e gerar modelos preditivos a partir de grandes volumes de
informagao tornou-se uma questao central neste processo (FERREIRA; ANDRICOPULO,
2018).

A quimioinformatica é uma area interdisciplinar que utiliza recursos das ciéncias
da computagao e informagao para resolver problemas da quimica (BUNIN et al., 2007),
os quais podem envolver diversos aspectos do processo de descoberta de candidatos a
farmacos, assim como constru¢ao de modelos QSAR (modelos de aprendizado de maquina),
minera¢ao de dados (em bancos de dados quimicos), mineracao de grafos moleculares,
dentre outros (SHARMA; SHARMA, 2018). A quimioinformética evoluiu muito nos
ultimos anos, desde técnicas de representacao, manipulagao e processamento de estruturas
quimicas até a andlise e exploragao de grandes bases de dados (LO et al., 2018). Assim,
a quimioinformaética e a inteligéncia artificial tém estimulado o campo da descoberta e
planejamento de candidatos a farmacos, sendo uma ferramenta indispensavel para extrair
informacoes quimicas de grandes bases de dados de compostos, apoiando o desenvolvimento
de farmacos de forma mais réapida e precisa (SHARMA; SHARMA, 2018; PANTELEEV;
GAO; JIA, 2018).

Vale destacar que a disponibilizacao dessas diversas e grandes bases de dados
sO se tornou possivel com a producao e armazenamento de dados biologicos e quimicos,
produzidos pela quimica combinatéria e por ensaios biologicos de alto desempenho (ZHU
et al., 2014). E importante frisar que analisar e explorar essas grandes bases de dados,
de forma manual, se tornou inviavel. Nesse contexto, a computacao, com suas diversas
ferramentas e técnicas, pode apoiar essa exploragao, manipulagao e processamento de

estruturas quimicas, gerando modelos computacionais capazes de fazer previsao e apoiar no



22

processo de descoberta e planejamento de novos candidatos a farmacos (CHEN; KOGEJ;
ENGKVIST, 2018; LO et al., 2018). Para tanto, estes compostos armazenados em bases
de dados sao representados utilizando estruturas computacionais, as quais apresentaremos

na préoxima secao.

2.1.2 Representagao das estruturas

Um composto quimico pode ser representado de diferentes formas graficas para a
compreensao humana. Isso se da a partir da disposicao e conexoes de seus atomos podendo
ser representados a partir das visualizagoes unidimensional (1D), bidimensional (2D) e

tridimensional (3D), conforme ilustra a Figura 1.

Figura 1 — Diferentes niveis de representacao molecular. Fonte: Autoria propria.
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Entretanto, para a captura e processamento da informacao referente as estruturas
moleculares a partir de métodos computacionais, se faz necessaria uma representacio
computacional de tradugao da informacao quimica para informagao computacional por
meio de nocgoes lineares de representacao de estruturas quimicas. Portanto, para que o
computador possa capturar, processar e compreender a estrutura quimica dos compostos,
a mesma necessita estar descrita em uma sequéncia numérica tnica (ALVES et al., 2018),
caracterizada como uma assinatura digital exclusiva (INCHITRUST, 2020). As notagoes
lineares mais conhecidas e utilizadas para codificar as estruturas quimicas sdo (Figuras 2 e
3):

« SMILES (do inglés, Simplified Molecular-Input Line-Entry System)
o SMARTS (do inglés, SMiles ARbitrary Target Specification)

o InChIKey (do inglés, International Union of Pure and Applied ChemistryKey)
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Figura 2 — Notagdo empregada para representar uma substancia quimica no formato de
InChl (International Chemical Identifier). Fonte: Autoria prépria.

O 0O
HaM \)J\ HEN‘\)J\ }
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INChI=1S/C2HENO2/c3-1-2(4)501 3H2,(H 4.5)/p-1 INChi=1S/C2ZHINO2/c3-1-2(4)5M1,3H2 (H.4.5)p+1
InChiKey=DHMQDGOQFOQNFH-UHFFFAQYSA-M InChiKey=DHMQDGOQFOONFH-UHFFFADYSA-O

Figura 3 — Exemplo de notacao SMILES, SMARTS, InChl e InChIKey. Fonte: Autoria
propria.
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Outros formatos também sao utilizados para a representacao molecular como os
formatos CT (Chemical ou Connection), sendo MDL MOL (ou molfile) e MDL SDF
(ou SDfile) os mais utilizados. Esses formatos representam as estruturas quimicas como
se fossem grafos e as informacoes sdo armazenadas em uma tabela. A teoria dos grafos
descreve a relagao de objetos em determinado conjunto por meio de vértices. Em arquivos
CT, atomos mais pesados que o hidrogénio correspondem aos vértices e ligagoes quimicas

as arestas (Figura 4).
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Figura 4 — Representagdo molecular usando o formato MOL file. Fonte: Autoria propria.
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Essas diferentes formas de representacao das estruturas estao presentes em diversas

bases de dados, as quais serao descritas no préximo toépico.

2.1.3 Bases de dados

Atualmente, existem varias bases de dados disponiveis em ambiente virtual que

armazenam dados e informagoes relevantes para estudos de Quimica Medicinal. Elas

fornecem informacgoes quimicas e biolégicas de substancias, como propriedades fisico-

quimicas e resultados de ensaios in vitro, in vivo e, principalmente, resultados de triagem
de alto desempenho (HTS)! (CHEN et al., 2018). Sdo exemplos de base de dados contendo

informacgoes quimicas e bioldgicas de substancias:

« BMRDB (Biological Magnetic Resonance Data Bank, www.bmrb.wisc.edu): é um

banco de dados de espectroscopia de ressonancia magnética nuclear em proteinas,

peptideos, acidos nucléicos e outras biomoléculas (ULRICH et al., 2008).

ChEMBL (www.ebi.ac.uk/chembl): possui dados quimicos, biolégicos e genémicos,
extraidos da literatura e de documentos de patentes, os quais podem ser usados para
apoiar a traducao de informacoes genémicas em novos candidatos a farmacos. Ela
possui 1.961.462 compostos e mais de 16.066.124 dados sobre atividades biologicas
(EMBL-EBI, 2020).

DrugBank (www.drugbank.ca): apresenta recursos que combinam dados detalhados
sobre farmacos (produtos quimicos, farmacolégicos e farmacéuticos) e informagoes
abrangentes sobre os alvos de farmacos (sequéncia e estrutura) (CHEN et al., 2018).
A versao mais recente, publicada em julho de 2020, contém 13.580 entradas de
farmacos, incluindo 2.637 medicamentos aprovados (classificados como pequenas

moléculas), 1.378 produtos biolégicos aprovados (proteinas, peptideos, vacinas e

Do inglés High Throughput Screening.


http://www.bmrb.wisc.edu/
https://www.ebi.ac.uk/chembl/
https://www.drugbank.ca/
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alergénicos), 131 nutracéuticos e mais de 6.376 experimentais (em fase de descoberta)
(WISHART et al., 2018).

« KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg/pathway
.html): é uma base de dados que possui informagdes sobre genes e genomas para
interpretagao funcional, além de informagoes quimicas e sistémicas para aplicacao
pratica de informagoes genomicas (KANEHISA et al., 2019).

o PDB (Protein Data Bank, www.rcsb.org): apresenta dados sobre biologia molecular,

estrutural e computacional, incluindo dados sobre as formas 3D de proteinas e acidos
nucléicos (BERMAN; HENRICK; NAKAMURA, 2003).

e PubChem (pubchem.ncbi.nlm.nih.gov): é uma das maiores bases de dados que
fornece informagoes sobre substancias quimicas e suas atividades bioldgicas, envol-
vendo algumas subcategorias, como substancia, composto e BioAssay. Além disso, é
possivel encontrar informacgoes sobre seguranca e toxicidade, patentes, referéncias
dentre outras (NIH, 2020).

o STITCH (Search Tool for Interactions of Chemicals, stitch.embl.de): é uma base de
dados que fornece uma rede de interagoes quimica-proteina conhecidas e previstas.
As interagoes incluem associagoes diretas (fisicas) e indiretas (funcionais); decorrem
de previsao computacional, de transferéncia de conhecimento entre organismos e
de interagoes agregadas de outros bancos de dados (priméarios). Sao mais de 2031

organismos identificados, 9,6 milhoes de dados sobre proteinas e 1,6 bilhdes de
informagoes sobre interagoes (SZKLARCZYK et al., 2016).

o SuperPred (prediction.charite.de): é uma base de dados que possui informagoes
sobre interacoes entre composto-alvo, conectando similaridade quimica de compostos
semelhantes a farmacos com alvos moleculares e abordagem terapéutica semelhantes
(NICKEL et al., 2014).

Além destas, existem outras bases de dados que podem ser utilizadas em estudos de
quimica medicinal, tais como ASDCD (Antifungal Synergistic Drug Combination Database),
BRENDA (The Comprehensive Enzyme Information System), CancerDR (Cancer Drug
Resistance Database), DCDB (Drug Combination Database), MATADOR (Manually
Annotated Targets and Drugs Online Resource), BindingDB (The Binding Database),
SuperTarget, TDR targets e Therapeutic Target Database (CHEN et al., 2018).

Essas bases de dados, em muitos casos, sao utilizadas para a identificacao de
compostos similares. No proximo topico abordaremos a relevancia da analise de similaridade

quimica e suas aplicagoes nos estudos de quimica medicinal.


https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.rcsb.org/
http://pubchem.ncbi.nlm.nih.gov/
http://stitch.embl.de
http://prediction.charite.de/
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2.1.4 Analise de similaridade quimica

A semelhanca das propriedades entre as moléculas ou similaridade quimica é um
dos conceitos mais explorados na quimioinformatica. A similaridade quimica é importante
para estabelecer relages entre estrutura e atividade ou propriedade (QSAR ou QSPR) e
compreender o comportamento de determinado grupo de moléculas (MAGGIORA et al.,
2014).

A similaridade quimica contribui para encontrar erros experimentais ou cliffs, pares
de estruturas quimicas semelhantes com atividade/propriedade muito diferentes em um
subgrupo de moléculas (GUHA; DRIE, 2008). Empregando métodos computacionais, a
similaridade é calculada aplicando-se uma fungao de similaridade (também chamada de
coeficiente de similaridade) com base nos descritores moleculares. Dentre as fungoes de

similaridade mais utilizadas, podem ser citados o coeficiente de Tanimoto, e as distancias

Euclidiana e de Mahalanobis (MAGGIORA et al., 2014).

Qualquer tipo de descritor pode ser utilizado na analise de similaridade, mas os
descritores baseados em fragmentos moleculares, principalmente os do tipo impressao
digital ou fingerprints, sdo os mais utilizados por serem mais faceis de interpretacao
(WILLETT, 2006).

Como dito anteriormente, a similaridade quimica é importante para se estabelecer
relagbes entre estrutura e atividade ou propriedade (QSAR ou QSPR) e também compre-
ender o comportamento de determinado grupo de moléculas (MAGGIORA et al., 2014),

como sera abordado no proximo tépico.

2.1.5 Relagbes Quantitativas entre Estrutura Quimica e Atividade - QSAR

A relagao entre a estrutura quimica e a propriedade bioldgica ou propriedade fisico-
quimica pode ser modelada por uma equacao matematica, que pode ser chamada de relacao
quantitativa estrutura-atividade (QSAR). Esta area tem como principal abordagem a
aplicacao de diversos métodos estatisticos de analise de dados com o intuito de desenvolver
modelos que possam predizer corretamente determinada propriedade bioldgica de compostos
baseados em sua estrutura quimica. Para se estabelecer essa relagao, é necessario o calculo
de descritores moleculares e dados biolégicos definidos experimentalmente (TROPSHA et
al., 2017). Como resultado, o modelo QSAR pode ser representado por meio da seguinte
equagao:

P, =k (Dy,Dy---,D,) (2.1)

em que, P; é uma variavel dependente que representa valores previstos da resposta biologica;
!/ ~ . . . .7 . .

k sao coeficientes de ajustes aplicados nas variaveis independentes; e, Dy, Dy ---, D,

sao variaveis independentes, também chamadas de varidveis descritivas, e indicam as

propriedades referentes a valores que representam cada descritor molecular.
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Estudos de QSAR apresentam varias aplicagoes na area de planejamento de can-
didatos a farmacos, tais como (i) identificacdo de novos ligantes/protétipos com ativi-
dade/propriedade desejada; (ii) otimizagao da atividade/propriedade; e (iii) identificagao
de compostos com efeitos potencialmente indesejados em estagios preliminares do desen-
volvimento (TROPSHA, 2010).

Com efeito, o crescente desenvolvimento das ciéncias “Omicas”, aliado ao aprimora-
mento de recursos computacionais, ao progressivo aumento da disponibilidade de conjuntos
de dados de alta qualidade e ao desenvolvimento de modelos preditivos, pode-se dizer que
o campo de estudos de QSAR e suas aplicagoes ainda é um campo fértil para pesquisas na
area de quimica medicinal (FOURCHES, 2014; GORB; KUZ'MIN; MURATOV, 2014).

Como apresentado anteriormente, os descritores moleculares sao partes fundamen-
tais na geracao de modelos de aprendizado de maquina. Abordaremos, a seguir, diferentes

estratégias computacionais para a obtencao de descritores moleculares.

2.1.6 Descritores Moleculares

Um descritor molecular é o resultado final de um procedimento matematico e
légico que transforma informagdo quimica codificada em uma representagao simbélica
de uma molécula em um nimero 1til ou o resultado de algum experimento padronizado.
Descritores moleculares contribuem para a compreensao de propriedades moleculares e/ou

podem ser utilizados na geragao de um modelo matemético para a previsao de determinada
propriedade de outras moléculas (TODESCHINI; CONSONNI, 2000).

Diferentes tipos de descritores quimicos refletem diferentes niveis de representacao
estrutural. Esses descritores podem ser classificados quanto a sua “dimensionalidade” em
unidimensionais (1D), baseados em propriedades fisico-quimicas e férmula molecular (por
exemplo, massa molecular, refratividade molar, logP, entre outros); bidimensionais (2D),
que descrevem propriedades que podem ser calculadas a partir de uma representacao
2D (tais como numero de atomos, nimero de ligagoes, indices de conectividade, entre
outros); e tridimensionais (3D), que dependem da conformagio das moléculas (por exemplo,
volume de van der Waals, drea de superficie acessivel ao solvente, entre outros) (XUE;
BAJORATH, 2000). Para desenvolver modelos de QSAR/QSPR, descritores e dados de
atividade/ propriedade sdo armazenados em uma tabela (Tabela 1). Nela, os dados de
atividade/propriedade sdo armazenados na matriz Y e os descritores na matriz X. Varios
tipos de relagoes podem ser obtidos a partir dessas matrizes. Modelos QSAR podem ser
gerados de forma categérica (por exemplo, ativos/inativos, téxico/nao téxico) ou uma

relagdo quantitativa, na qual a propriedade estudada (Y) é representada por uma fungao
de um ou mais descritores (X) (PUZYN; LESZCZYNSKI; CRONIN, 2010).

A construcao dos modelos, como apresentado anteriormente, vem da regressao

que relaciona um conjunto de atributos (descritores) de um composto quimico e a sua
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Tabela 1 — Relagao entre dados de atividade/propriedade e descritores moleculares.

Identlﬁ(’:ac.ior At1v1(.1ade / Descritor 1 Desc. 2 Desc. 3 ... Descr. n
quimico propriedade

Molécula 1 Y1 X11 X12 X13 Xln

Molécula 2 Y2 X21 X22 X23 Xgn

Molécula 3 Y3 X31 X32 X33 Xgn

Molécula 4

Molécula 5 Y, X1 X2 X3 Xnn

atividade biolégica com relagao a um ou mais alvos biolégicos. Para realizar essa tarefa,
algoritmos de aprendizado de maquina podem ser utilizados, os quais serao apresentados

na proéoxima secao.

Nesta secao serao apresentados os fundamentos relacionados as diferentes aborda-
gens de aprendizado de maquina, aprendizado profundo de maquina, QSAR, descritores

moleculares, analise de similaridade e triagem virtual.

2.2 Aprendizado de Maquina

Aprendizado de maquina é uma técnica bastante utilizada para processar grandes
quantidades de dados e extrair visdes (insights) valiosos. Os quatro principais paradigmas
de algoritmos de aprendizado de maquina encontrados na literatura sao: supervisionado,

nao-supervisionado, semi-supervisionado e por reforco (Figura 5) (MITCHELL, 1997).

Figura 5 — Tipos de aprendizado de maquina. Fonte: Autoria propria.
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No aprendizado supervisionado, o algoritmo recebe dados de entrada e saida

rotulados, permitindo que seja estabelecido um “mapeamento” entre eles. Ja no aprendizado
nao-supervisionado, os dados de entrada nao tém rotulos, e o algoritmo deve identificar
padroes ou estruturas por meio desses dados (MITCHELL, 1997).

No aprendizado semi-supervisionado, a maioria dos dados de entrada nao tem
rotulos, mas pode haver alguns dados rotulados também. Assim, os dados rotulados sao

usados para obter mais informagoes sobre os dados e, dessa forma, realizar o processo de
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aprendizado tendo como base os dados nao rotulados. Isso permite que o algoritmo use dados

rotulados e nao rotulados para realizar tarefas supervisionadas ou nao supervisionadas

(BRUCE, 2001).

No aprendizado por refor¢o, os modelos sao treinados para tomar decisdes em um
ambiente incerto e complexo, recebendo recompensas ou penalidades com base nas ac¢oes
tomadas. A tentativa e erro é usada para maximizar as recompensas (GOODFELLOW;
BENGIO; COURVILLE, 2016).

Adicionalmente, o desenvolvimento e a implementacao de métodos de aprendizado
de maquina podem auxiliar, consideravelmente, o processo de descoberta precoce de
candidatos a farmacos, especialmente para a doenca de Alzheimer. Nas subsec¢oes seguintes,
abordaremos os algoritmos de aprendizado de maquina adotados neste trabalho: Random

Forest, SVM, Multilayer Perceptron e a biblioteca TensorFlow.

2.2.1 Random Forest

A Random Forest, ou Florestas Aleatorias em portugués, é um método de apren-
dizado supervisionado que pode ser usado para solucionar problemas de classificacao e
regressdo. £ uma combinacdo de vérias arvores de decisdo, em que cada arvore é cons-
truida a partir de uma amostra aleatéria (com reposi¢ao) do conjunto de dados original
(SVETNIK et al., 2003).

Florestas aleatorias sao usadas para prever um valor ou propriedade de interesse:
regressao (continuo) ou classifica¢ao (categérico). Em um problema de classificagao, o
algoritmo gera varias arvores de decisao a partir do conjunto de dados de treinamento e a
saida é definida pela votacdo majoritaria. J& em problemas de regressao, o valor final é

calculado como a média das previsdes de cada arvore para cada observagdo (HORVATH,;
ALDAHDOOH, 2017).

Dessa forma, nesse método, cada arvore é construida de forma independente, a
partir de uma amostra bootstrap dos dados originais. Assim, dois tercos dos exemplos
originais sao utilizados na construgao de cada arvore (k-ésima). O conjunto restante é
usado para avaliagdo do erro (BREIMAN, 2001). Isso ajuda a reduzir a correlagio entre

as arvores e melhora a capacidade de generalizacao do modelo.
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Figura 6 — Ilustracdo das arvores na florestas aleatorias. Fonte: www.researchgate.net.
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O processo de construgao das arvores inclui uma divisao aleatoria dos dados em um
conjunto de treinamento e um conjunto de testes; a construgao da arvore de classificacao
a partir do conjunto de treinamento; e a comparacgao entre a classe prevista e a classe
verdadeira para cada elemento do conjunto de testes. Como exemplificado na figura 6, O
procedimento é repetido varias vezes para gerar as arvores de classificagao. O resultado

final gerado contempla as taxas médias de erro sobre as arvores, assim como os respectivos

erros-padrao (BREIMAN;, 2001).

Cada arvore é construida a partir de uma amostra aleatoria dos dados originais
e uma selecao aleatéria de um subconjunto de varidveis. A melhor divisao é usada para

dividir cada nd. As arvores sao crescidas ao maximo, sem poda.

Destaca-se, que a taxa de erro de uma floresta de arvores de decisao depende
da robustez das arvores individuais na floresta e da correlagao entre suas classificagoes
(BREIMAN, 2001).

2.2.2  Support Vector Machine

Support Vector Machine (SVM), ou Méquinas de Vetores Suporte em portugués, sao
um algoritmo de aprendizado de maquina supervisionado utilizado para resolver problemas
de classificacao e regressao. Esse algoritmo é capaz de realizar tanto classificacao linear
quanto uma classificagao nao linear, gracas a uma eficiente abordagem conhecida como

truque do kernel (JAMES et al., 2017).

Para o caso de classificacao binaria, o SVM busca encontrar o hiperplano de
separacao 6timo que maximize a margem entre duas classes (JAMES et al., 2017). Em
outras palavras, o SVM procura a linha que melhor separa os dados em dois grupos, onde
cada grupo representa uma classe diferente (Figura 7) (GULIA; DHAIYA; ANSHUL,
2019). Esse hiperplano é construido utilizando técnicas de programagao quadrética, e foi

proposto originalmente por Boser e Vapnik (SUSHKO, 2011).
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Figura 7 — Hiperplano 6timo separando os dados com a méaxima margem. Os vetores-
suporte estao circulados em preto. Fonte: Baseado em (GULIA; DHAIYA,;
ANSHUL, 2019).
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Ressalta-se que o SVM nao é limitado apenas a problemas de classificacdo binaria,
podendo ser estendido para classificar em multiplas classes. Além disso, ele pode ser usado
para problemas de regressao, em que o objetivo é encontrar a melhor linha ou superficie
para se ajustar aos dados. Dessa forma, em problemas de classificacdo com mais de duas
classes, o SVM pode ser aplicado de duas maneiras principais: um-contra-um (one-vs-one)
ou um-contra-todos (one-vs-all) (YANG et al., 2013).

No método um-contra-um, o SVM cria um modelo para cada par de classes e faz a
classificacao a partir da votacao da maioria dos modelos. Por exemplo, se houver 4 classes
(A, B, C e D), serdo criados seis modelos: A vs. B, A vs. C; A vs. D, Bvs. C,Bvs. DeC
vs. D. Cada modelo ird gerar uma decisao de classificacao e a classe mais votada serd a
classe final do objeto (GONCALVES, 2008).

Ja no método um-contra-todos, o SVM treina um modelo para cada classe em
relagao a todas as outras. Por exemplo, se houver 4 classes (A, B, C e D), serao criados
quatro modelos: A vs. BCD, B vs. ACD, C vs. ABD e D vs. ABC. Cada modelo ira gerar
uma decisao de classificacao e a classe com o maior valor de confianca sera escolhida como
a classe final do objeto (FRIEDMAN, 1996; GONCALVES, 2008).

Destaca-se que ambos os métodos tém suas vantagens e desvantagens. No método
um-contra-um, ha menos dados de treinamento para cada modelo, resultando em modelos
mais precisos e rapidos. Por outro lado, a construcao de um grande niimero de modelos pode
ter alto custo computacional. No método um-contra-todos, ha mais dados de treinamento
para cada modelo e isso pode resultar em modelos mais robustos. Porém, o desempenho
pode ser afetado quando as classes sao desbalanceadas (FRIEDMAN, 1996).

Os pontos fortes do SVM incluem a capacidade de lidar com conjuntos de dados de
alta dimensionalidade e a habilidade de generalizar bem para novos dados, isto é, ele pode
fazer previsoes precisas em conjuntos de dados que nunca viu antes. Entretanto, o SVM

pode ser sensivel a escolha de paradmetros, como o tipo de kernel escolhido pode afetar
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significativamente o desempenho do algoritmo. Além disso, a largura de banda (conhecida
como parametro de regularizagao) também pode influenciar a qualidade das previsoes. Por
isso, é necessario ajustar esses parametros para garantir que o SVM esteja funcionando da
melhor forma possivel para o conjunto de dados em questao (GULIA; DHAIYA; ANSHUL,
2019).

2.2.3  Multilayer Perceptron

O Multilayer Perceptron (MLP) é uma rede neural artificial composta por camadas
de neur6nios que processam informagoes de entrada e geram saidas por meio de um
processo de aprendizado supervisionado. Esse algoritmo tem sido aplicado com sucesso em
uma série de problemas dificeis, principalmente para problemas de classificacao e regressao
(HAYKIN;, 2009).

Desta forma, um MLP consiste em um conjunto de unidades sensoriais (nés fontes)
que constituem a camada de entrada; uma ou mais camadas ocultas (ou intermedidrias) de
nds computacionais (neurénios); e uma camada de saida de n6s computacionais (neur6nios)
estas camadas podem ser exemplificadas na figura 8. Adicionalmente, se faz necessario

esclarecer alguns conceitos, dentre eles (GARDNER; DORLING, 1998):

Figura 8 — Camadas do Multilayer Perceptron. Fonte: https://www.nomidl.com /natural-
language-processing/what-is-multilayer-perceptron/

Input Hidden Layer Output
Layer Layer

o neurdnio: é a unidade basica de processamento do MLP. Ele recebe entradas ponde-

radas, as soma e aplica uma funcao de ativagao para produzir uma saida.

o camada: é um conjunto de neurdnios que processam informagoes de entrada, de
forma paralela. Existem trés tipos de camadas no MLP: a camada de entrada, a

camada oculta e a camada de saida.
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o pesos: sao valores atribuidos a cada entrada do neurénio, determinando a influéncia
que cada entrada terd na saida final. Os pesos sao ajustados durante o processo de

treinamento da rede para minimizar o erro de predicao.

« funcao de ativacao: é aplicada a soma ponderada das entradas do neurdnio para
determinar a saida do neurénio. Ela é responsavel por introduzir nao linearidade na

rede e permitir que ela aprenda relagoes complexas entre as entradas e as saidas.

o feedforward: é o processo de propagar as entradas da rede através das camadas até a

camada de saida, produzindo uma saida final.

e backpropagation: é o algoritmo de treinamento do MLP, que consiste em propagar
o erro de predicao da saida da rede de volta através das camadas até a camada de

entrada, ajustando os pesos ao longo do caminho para minimizar o erro.

o overfitting: é um problema comum no treinamento do MLP, que ocorre quando a
rede se ajusta demais aos dados de treinamento e nao generaliza bem para novos
dados. Isso pode ser evitado através de técnicas como a regularizagao e a validagao

cruzada.

Portanto, o algoritmo geralmente mais utilizado para treinar uma rede MLP ¢ o
de retropropagacao (Backpropagation). Esse algoritmo foi desenvolvido por Rumelhart,
Hinton e Willians, em 1986, e é composto por quatro passos: inicializacao, ativacao, treinar
pesos e iteragao. Esse algoritmo ajusta os pesos da rede para minimizar o erro entre a
saida real e a saida prevista, sendo que cada entrada de treinamento esta associada a uma
saida desejada. Assim, o MLP pode relacionar o conhecimento a varios neurénios de saida
(HAYKIN, 2001).

Os pontos fortes do MLP incluem a sua flexibilidade (capacidade de lidar com
varios problemas, desde as tarefas de classificagao bindria até problemas de regressao e
classificacdo multiclasse), sua capacidade de lidar com problemas nao-lineares, escalabi-
lidade (capacidade de lidar com grandes conjuntos de dados e alta dimensionalidade) e
sua habilidade de generalizacao (GERTRUDES et al., 2012). No entanto, o MLP pode
ser sensivel a escolha do niimero de camadas ocultas, do nimero de neurdnios em cada
camada e da taxa de aprendizado. A escolha adequada desses parametros é essencial para
obter um bom desempenho do MLP (QUADRI et al., 2022).

2.3 Aprendizado profundo de maquina: TensorFlow

O aprendizado profundo de maquina, conhecido como deep learning, ¢ uma subarea
da Inteligéncia Artificial que se destaca por sua capacidade de aprender automaticamente
recursos complexos e robustos a partir de dados brutos, sem a necessidade de engenharia

de recursos. Atualmente, existem diversas bibliotecas utilizadas para o desenvolvimento
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de modelos de aprendizado profundo, como PyTorch, Theano, Keras, TensorFlow, dentre
outras (IQBAL et al., 2023).

TensorFlow é uma biblioteca de codigo aberto, desenvolvida pela equipe do Google
Brain (GOOGLE, 2023), que se tornou uma das mais populares, de acordo com as avalia¢oes
com estrelas no GitHub. Ela é considerada a mais facil de usar, fornecendo uma estrutura
flexivel e robusta para criar, treinar e implantar modelos de aprendizado profundo em uma
variedade de dominios, desde a visdo computacional até o processamento de linguagem
natural, a descoberta de novos medicamentos, etc (ALZUBAIDI et al., 2021).

TensorFlow é conhecido por seu modelo de programacao orientado a grafos, sendo
possivel representar as operacoes matematicas como nos em um grafo direcionado, em que
os dados fluem através das arestas desse grafo, por isso a origem do nome TensorFlow. Essa
abordagem permite que os desenvolvedores definam a arquitetura de um modelo de maneira
abstrata e, em seguida, otimizem de forma eficiente a execuc¢ao do modelo em hardware.
Além disso, a estrutura de grafos proporciona que o TensorFlow seja altamente escalavel e
adequado para o treinamento distribuido em clusters de computadores (TENSORFLOW,
2023a).

Os modelos de aprendizado profundo, no TensorFlow, sao construidos usando
camadas, as quais sao blocos fundamentais que podem ser empilhados para criar arqui-
teturas complexas de redes neurais (Figura 9). Ele fornece varias camadas: densas (fully
connected), convolucionais, recorrentes, etc, as quais facilitam a construgao de arquiteturas
personalizadas para as tarefas especificas, como classificagao de imagens, traducao de
idiomas e deteccao de objetos (ABADI et al., 2016).

Figura 9 — Ilustragao do TensorFlow, disponivel em www.tensorflow.org/.

Dentre as varias classes da biblioteca TensorFlow, destaca-se a “tf.keras.Sequential”
que permite criar modelos de redes neurais sequenciais de forma mais simples. Nela, as
camadas sao empilhadas uma apds a outra na ordem em que sao adicionadas ao modelo,

tornando-a ideal para modelos lineares e simplificando a construcao de arquiteturas de
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aprendizado profundo para tarefas como classificacao, regressao e demais desafios de
aprendizado de maquina. Essa classe faz parte do médulo “tf.keras”, que é uma API

(Application Programming Interface) de alto nivel para construir e treinar modelos de
aprendizado profundo em TensorFlow (TENSORFLOW, 2023b).

2.3.1 Meétodos de selecao de hiperparametros

A maioria dos algoritmos de aprendizado de méaquina contém, pelo menos, um
hiperparametro para controlar a complexidade do modelo. A escolha dos valores para os
hiperparametros influencia o desempenho do modelo, sendo ainda considerado um desafio
computacional (PEDREGOSA, 2016). A sele¢ao dos hiperparametros é importante por
apresentar os seguintes efeitos (FEURER; HUTTER, 2019):

o reduzir o esforco humano necesséario para aplicar métodos de aprendizado de maquina;

o melhorar o desempenho de algoritmos de aprendizado de maquina, adaptando-os ao

problema em questao.

o melhorar a reprodutibilidade dos estudos cientificos. Isso facilita comparacoes justas,
uma vez que métodos diferentes s6 podem ser comparados de forma justa se todos

eles receberem o mesmo nivel de ajuste para o problema em questao.

A Figura 10 ilustra as fases de otimizagao para alguns exemplos de hiperparametros,

de acordo com o tipo de algoritmo.

Figura 10 — Exemplos de cendrios para selecao de hiperparametros. Fonte: Autoria prépria.
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Logo, existem dois tipos de métodos de otimizagao de hiperparametros: pesquisa
manual e métodos de pesquisa automatizada. O primeiro, por testar manualmente os
conjuntos de hiperparametros, depende da intuicao e experiéncia de usuarios especialistas
que podem identificar os parametros importantes que tém um maior impacto nos resultados
e, assim, determinar a relacao entre determinados parametros e os resultados finais por meio
das ferramentas de visualizacao. Isso requer que os usuérios tenham mais conhecimento
profissional e experiéncia pratica sendo, portanto, dificil de ser aplicado por usuarios nao
especialistas (WU et al., 2019). O segundo método visa superar as desvantagens da busca
manual, propondo algoritmos de busca automatizada, tais como busca em grade e busca

aleatéria. Os algoritmos de busca automatizada serdao detalhados nos topicos a seguir.

2.3.1.1 DBusca em Grade

A busca em grade? é uma abordagem de busca de parametros que gera, exaustiva-
mente, candidatos a partir de uma grade de valores ideais. Essa abordagem analisa cada
combinacao de valores possiveis de hiperparametros. Em seguida, avalia o desempenho de
acordo com uma métrica pré-definida pelo método de validagao cruzada. Por ultimo, sdo ob-
tidos valores de hiperparametros que alcangam o melhor desempenho (LIASHCHYNSKYT;
LIASHCHYNSKYT, 2019).

A busca em grade é basicamente uma lista de valores candidatos para cada hi-
perparametro. O nome “grade” vem do fato de que todos os candidatos possiveis dentro
de todos os hiperparametros necessarios sdo combinados em uma espécie de grade. A
combinagao que produz o melhor desempenho, preferencialmente avaliada em um conjunto
de validagao é, entdo, selecionada (BERGSTRA; BENGIO, 2012).

Vale ressaltar que a eficiéncia deste algoritmo diminui conforme aumenta o nimero
de hiperpardmetros ou o aumento da faixa de valores a serem ajustados (BERGSTRA;
BENGIO, 2012). Portanto, o uso da pesquisa em grade é indicado a depender do nimero
de possibilidades de ajustes (LIASHCHYNSKYI; LIASHCHYNSKYT, 2019).

2.3.1.2 Busca Aleatoria

O algoritmo de busca aleatéria® tenta combinacoes aleatérias a partir de uma gama
de valores, em que cada configuracao ¢ amostrada a partir de uma distribuicao de possiveis
valores de parametro. Em comparagao com o algoritmo de pesquisa em grade, a pesquisa
aleatdria é mais eficiente em um espacgo de alta dimensao, embora nao seja confidvel para

treinar modelos complexos (WU et al., 2019).

A selecao dos valores a serem avaliados é totalmente aleatéria. Além da velocidade,

a pesquisa aleatéria aproveita-se da aleatoriedade no caso de hiperparametros continuos

Do inglés Grid Search.

3 Do inglés Random Search.
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que devem ser discretizados quando otimizados pela pesquisa em grade (BERGSTRA,;
BENGIO, 2012).

Apos a apresentacao de algumas caracteristicas importantes relacionadas com os
algoritmos empregados neste trabalho, a seguir, sera detalhada a etapa de validacao de

modelos de aprendizado de maquina.

2.3.2 Validagao de modelos QSAR

Percebe-se na literatura que métodos para validacao de modelos QSAR propoem
a divisao do conjunto de amostras em dois subconjuntos, com tamanhos diferentes:
geralmente, 70% e 30% (MAZZOLARI; VISTOLI, 2015), ou 80% e 20% (TROPSHA,
2010; TROPSHA et al., 2017). O conjunto maior é responsavel por treinar (“conjunto de
treinamento”) e o menor por testar (“conjunto de teste”) o modelo. Essa subdivisao pode
ser realizada aleatoriamente, para cada um dos subconjuntos. Dessa forma, a depender da

quantidade de alvos e compostos, todos estarao presentes nos conjuntos de treinamento e

teste (JUNG, 2018).

A validagdo do modelo acontece por meio da “Validacao Cruzada Aninhada”
(NCV)*, conforme ilustrado na Figura 11. Esse método executa dois lagos (loops) aninhados,
sendo o primeiro responsavel pela validagao externa e executado logo apo6s o loop interno ser

concluido. Esse loop interno fornece os melhores parametros e é conhecido como validagao
interna (PARVANDEH et al., 2020).

4 Do inglés Nested Cross Validation.
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Figura 11 — Representacao do método de validagao cruzada aninhada, sendo k = 5. Fonte:
Autoria prépria.
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Dentre os diferentes tipos de validacao interna, um método bastante empregado é o
da validagao cruzada k-fold (TROPSHA, 2010; CHERKASOV et al., 2014). Ele subdivide
o conjunto de treinamento em k subconjuntos de tamanhos iguais. Em seguida, treina
o modelo em subconjuntos k-1 e, depois, testa o modelo no subconjunto restante. Esse
processo € repetido k vezes, alterando os elementos do conjunto de teste, possibilitando
que todos os k subconjuntos tenham feito parte do conjunto de teste (OJALA; GARRIGA,
2010).

2.3.3 Avaliagao de modelos QSAR

A eficiéncia de um modelo QSAR, muitas vezes, é medida a partir da comparagao
entre os valores reais e os previstos para a propriedade de interesse. A “matriz de confusao”
(Figura 12), por exemplo, é uma medida muito utilizada na solugao de problemas de
classificacdo, podendo ser aplicada a classificagao binaria e também a problemas de

classificagdo multiclasse (KULKARNI; CHONG; BATARSEH, 2020).

Essa matriz é uma tabulacao cruzada dos rétulos observados: reais e os previstos.
Os elementos diagonais da matriz de confusao indicam previsdes corretas, enquanto os

fora da diagonal representam previsoes incorretas (JAMES et al., 2017).

A saida “VN” significa Verdadeiro Negativo e indica o niimero de exemplos negativos

classificados com precisao. Do mesmo modo, “VP” significa Verdadeiro Positivo, que indica
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o numero de exemplos positivos classificados com precisao. O termo “FP” mostra um valor
falso positivo, isto é, o nimero de exemplos negativos reais classificados como positivos
e “FN” significa um valor falso negativo que é o nimero de exemplos positivos reais
classificados como negativos (KULKARNI; CHONG; BATARSEH, 2020).

Figura 12 — Representacao bésica de Matriz de Confusao. Fonte: Autoria propria.
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As células destacadas em azul claro na Figura 12 representam os casos em que as
classificagoes foram previstas corretamente, enquanto que os elementos fora dessa diagonal

foram aqueles rotulados incorretamente pelo modelo.

Com os valores da matriz de confusao obtidos, outras métricas podem ser calculadas

para medir o desempenho do modelo. Dentre elas, destacam-se:

« acuracia: é a proporcao de instancias que sao classificadas corretamente entre todas
as amostras do conjunto de dados (HORVATH; ALDAHDOOH, 2017). Dito de outra

forma, se refere ao quao frequente o classificador esta correto.

total de acertos B VP+ VN
total de elementos da amostra (VP + FN) + (VN + FP)

acuracia = (2.2)

Para isso, considera-se:

— VP (Verdadeiro Positivo). Exemplificando: se um individuo testou positivo para

a COVID-19 e ele tem essa doenca, entao é chamado de verdadeiro positivo.

— VN (Verdadeiro Negativo). Seguindo o mesmo exemplo anterior, se o resultado
do teste para a COVID-19 for negativo e o individuo nao tem essa doenga,

entao ¢ classificado como verdadeiro negativo.

— FN (Falso Negativo). Se o resultado do teste da COVID-19 for negativo e o

individuo estiver com a doenca, entao é chamado de falso negativo.
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— FP (Falso Positivo). Se o resultado do teste para a COVID-19 for positivo para
o individuo que nao tem essa doenca, entdo é chamado de falso positivo. A

equacao 2.2 apresenta o calculo de acuracia.

e precisao: ¢ a relagao entre o verdadeiro positivo e o nimero total de positivos
previstos. Portanto, ¢ a porcentagem do conjunto classificado corretamente. Isto

é, daqueles compostos que foram classificados como corretos, quantos efetivamente
estavam corretos (MAZZOLARI; VISTOLI, 2015; HORVATH; ALDAHDOOH, 2017).

VP

VP+FP) (23)

precisao =

« sensibilidade (recall): é a proporgao de previsoes positivas corretas em comparagao
ao total de positivos da amostra, isto é, a capacidade do modelo em identificar todas
as instancias de interesse (MAZZOLARI; VISTOLI, 2015). Nessa medida, os falsos

negativos sao considerados mais prejudiciais que os falsos positivos.

bilidad verdadeiros positivos VP (2.4)
sensibilidade = = .
total de positivos da amostra (VP + FN)

o f-score (F-measure): é obtido a partir de uma média ponderada entre a sensibilidade
e a precisdao. O resultado dessa média estd no intervalo entre [0, 1]. Quanto mais

préoximo de 1, melhor serd o desempenho do modelo.

1 * precisao x sensibilidade 14+ 0) % XNy VP
f — measure = ( +B P ) _ ( 5) V\;VNJrFP ¥]€+FN

[2 x precisao + sensibilidade B2 *

VN+FP + VP+FN
(2.5)

» especificidade: é a proporc¢ao de previsoes negativas corretas em comparacao ao
nimero total de instancias negativas (MAZZOLARI; VISTOLI, 2015).

verdadeiros negativos B VN
total de negativos da amostra ~ (VN + FN)

especi ficidade = (2.6)
» coeficiente Kappa: é uma medida responsavel por medir o grau de concordancia,
ou discordancia, entre o que foi previsto e observado na classificacao, variando entre
0 e 1 (VIEIRA; SOUSA, 2010). A Tabela 2 ilustra o célculo do coeficiente Kappa,

tendo como ponto de partida um problema de duas classes.

Tabela 2 — Matriz de confusao para um problema de duas classes, sendo N = o ntimero
total de classes, C1 e C2 indicam os rotulos relacionados com as classes 1 e 2,

respectivamente.
Ré6tulo previsto
C1 C2 Total
, C1 a b a+b=Cle,
Roétulo correto oD - d crd=C2,..
Total | a4+ c=Clyeq | b+d=C2peq N
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O coeficiente Kappa é definido por:

Nx(a+e+1i) — (Clerr * Clyred + C20mr % C2preq)

K = 2.7
apt N2 — (C]-cm"r * C]-p'red + CQcorr * CQpred) ( )
podendo ser generalizado para as classes m:
N Wi Mu - Tri 'corr ) e
Kappa = 2= © 2iz1 Cleorr Cprea (2.8)

N2 - ;11 CicorrCipred
em que C'M;; representam os elementos diagonais da matriz de confusao (TALLON-
BALLESTEROS; RIQUELME, 2014). O resultado do coeficiente Kappa é interpre-

tado conforme consta na Tabela 3.

Tabela 3 — Interpretacao dos valores do coeficiente de Kappa

Valor Kappa >0,20 0,21 - 0,40 0,41 - 0,60 0,61 - 0,80 0,81 - 1,00

Qualidade do
classificador

ruim fraca boa muito boa excelente

¢ area sob a curva (AUC)%: é uma medida que permite melhor visualizacio do
desempenho do modelo. O espago ROC (Receiver Operating Characteristic) representa
os tradeoffs relativos entre beneficios (verdadeiros positivos) e custos (falsos positivos).
Quanto mais proximo de 1, melhor serda o desempenho do modelo, mas quanto mais
préximo da diagonal, é possivel inferir uma previsao aleatéria (em torno de 0,5)

(FAWCETT, 2006).

2.3.4 Dominio de aplicabilidade

A definicao do dominio de aplicabilidade (AD)®% de um modelo é uma etapa
fundamental para maximizar a qualidade do préprio modelo (BOBROWSKI et al., 2020).
Um modelo produzira previsoes confiaveis quando suas hipéteses forem validas e previsoes
nao confiaveis quando forem violadas. Portanto, ¢ importante definir o espago onde as
previsoes do modelo sdo confidveis (BASKIN; KIREEVA; VARNEK, 2010; MAZZOLARI;
VISTOLI, 2015). Assim, o objetivo do AD é avaliar a precisdo da previsao (ou confiabilidade)
do modelo de acordo com a avaliacao das moléculas e sua relagao com o “dominio” do
modelo (BASKIN; KIREEVA; VARNEK, 2010).

Neste contexto, a andlise de similaridade entre os compostos do conjunto de
treinamento é considerada uma abordagem para determinacao da estimativa do dominio
de aplicabilidade. Um composto tera uma previsao confiavel se for muito semelhante com

aqueles utilizados pelo algoritmo na fase de aprendizagem (BOBROWSKI et al., 2020).

Do inglés Area Under The Curve.

6 Do inglés Applicability Domain.
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A similaridade pode ser calculada em conformidade com critérios e o desempenho do

modelo é impresso em relagdo a toda a gama de similaridade no conjunto de treinamento

(MAZZOLARI; VISTOLI, 2015).

A confiabilidade nao avaliada das previsoes é o principal problema que restringe a
aplicacao pratica dos modelos QSAR. Isto é, os modelos computacionais que tém uma
boa precisao de predicao para os compostos que foram usados para construir e validar o
modelo nao tém garantia de um desempenho igualmente bom para compostos diferentes
(novos). Logo, nao existe um modelo computacional universal que funcione igualmente
bem em todo o espago quimico (SUSHKO, 2011).

Desta forma, a falha em especificar a drea de aplicabilidade do modelo (subespago
quimico), determinando onde o modelo é valido e é suscetivel em fornecer previsdes
precisas, é o fator limitante para a aplicacao pratica de modelos computacionais. Portanto,
o problema da incerteza na precisao e na confiabilidade das previsoes é abordado em uma
drea emergente de pesquisa, que é o dominio de aplicabilidade (SUSHKO, 2011). A Figura

13 ilustra um exemplo do problema relacionado ao AD.

Figura 13 — Exemplo ilustrativo para o problema do dominio de aplicabilidade. Fonte:
Autoria prépria.
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Na regido cinza, os dados sao aproximados em um modelo linear (linha vermelha).
Porém, fora dessa regido, a aproximacao nao é valida. Portanto, o dominio de aplicabilidade
do modelo linear esta definido na regido cinza (intervalo [-1, 1]) (SUSHKO, 2011).

Apébs a descricao das etapas envolvidas na construcao e validagdo dos modelos de
QSAR, o proximo passo do trabalho envolve a aplicacao destes modelos como filtros nos
estudos de triagem virtual, a qual ¢ uma das técnicas empregadas na identificacao de

novos candidatos a farmacos e que serd descrita em mais detalhes a seguir.
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2.4 Triagem Virtual

A triagem virtual é uma abordagem computacional usada para rastrear grandes
bases de dados contendo moléculas pequenas em busca de substancias com propriedades
quimica/biologicas desejadas e que podem ser testadas experimentalmente (CARPENTER
et al., 2018; NEVES et al., 2018).

A triagem virtual realiza as buscas por meio de simulagdo computacional (in silico)
de centenas/milhares de compostos em estruturas de alvos bioldgicos, aumentando o
rendimento e sucesso na descoberta de potenciais candidatos a farmacos. Desta forma, o
aprendizado de maquina é uma poderosa ferramenta para auxiliar o processo de triagem
virtual e, consequentemente, a descoberta de compostos como potenciais candidatos a
farmacos (CARPENTER et al., 2018; CARPENTER,; HUANG, 2018). A estratégia de
triagem virtual pode ser dividida em duas categorias (Figura 14): métodos baseados no
ligante (LBVS)” e técnicas baseadas na estrutura do alvo (SBVS)® (KUMAR; KRISHNA;
SIDDIQI, 2015).

Figura 14 — Diferentes abordagens empregadas em estudos de Triagem Virtual. Fonte:
Autoria prépria.
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E importante ressaltar que a finalidade da triagem virtual “nao ¢é substituir ensaios
in wvitro ou in vivo, mas acelerar o processo de descoberta, reduzir o nimero de candidatos
a serem testados experimentalmente e racionalizar sua escolha, proporcionando economia
de tempo, custo, recursos e mao-de-obra” (NEVES et al., 2018).

Do inglés Ligand-based Virtual Screening.

8 Do inglés Structure-based Virtual Screening.
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Dentre as diferentes estratégias para execucao da triagem virtual, modelos QSAR
podem ser utilizados como filtros nas etapas iniciais da VS. Em geral, os modelos QSAR séo
usados para prever a propriedade biologica de novos compostos e podem ser considerados
ferramentas valiosas devido ao seu alto e rapido rendimento, além de boa taxa de acerto
(CARPENTER et al., 2018; NEVES et al., 2018).

Cabe ainda ressaltar que as triagens virtuais baseadas no aprendizado de maquina
“estao entre as técnicas menos caras em termos de computagao e tiveram um sucesso
significativo” nas ultimas décadas (CARPENTER et al., 2018). Elas incluem “a selegao de
um conjunto de compostos filtrados, constituidos por agentes ativos e inativos conhecidos.
Apéds o treinamento do modelo, ele é validado e, se suficientemente preciso, usado em

bancos de dados nao vistos anteriormente podem ser usados para rastrear novos compostos
com a desejada atividade frente ao alvo de interesse” (CARPENTER; HUANG, 2018).

Alguns autores (CARPENTER et al., 2018) propdem o seguinte fluxo de trabalho
ao empregar aprendizado de maquina em estudos de triagem virtual: ‘“uma vez construido
e considerado satisfatério um modelo de aprendizado de maquina (modelo treinado e
validado), ele pode ser usado para conduzir uma simulagao VS em bibliotecas quimio-
genOmicas extremamente grandes. Os compostos com maior pontuacao sao chamados
de hits (acertos) e estao sujeitos a testes in vitro para verificar se apresentam atividade
biologica desejada. O rendimento destes testes é muito superior ao de uma triagem normal
de alto rendimento, uma vez que o modelo obtido via aprendizado de méaquina ja previu a
interacao composto-alvo biolégico. A partir deste ponto, os compostos mais promissores
(chamados leads - derivagdes) podem ser desenvolvidos e testados, esperangosamente se
tornando farmacos” (CARPENTER et al., 2018).

Existem diversos algoritmos/classificadores que podem ser aplicados na triagem
virtual. Alguns exemplos de aplicagao do aprendizado de maquina na triagem virtual

incluem:

(a) descoberta de farmacos para a doenca de Alzheimer (CARPENTER; HUANG,
2018). Algoritmos de aprendizado de maquina usados: Naive Bayes; k-Nearest Neighbors;
Support Vector Machines; Artificial Neural Networks;, Ensemble Methods.

(b) previsao de interagao proteina-composto (CHEN et al., 2018). Algoritmos de
aprendizado de maquina usados: algoritmos baseados em similaridade (métodos do vizinho
mais préximo, modelos locais bipartidos, métodos de fatoragdo da matriz); algoritmos

baseados em vetores de caracteristicas (Florestas Aleatorias).

(c) identificacdo de potenciais inibidores da proteina-tirosina fosfatase 1B (PTP1B)
- um alvo terapéutico para diabetes tipo 2 e obesidade. Algoritmos de aprendizado de

maquina utilizados: naive Bayesian, random forest, support vector machine e k-nearest
neighbor (CHAMJANGALI, 2020).
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Além destes, redes neurais artificiais foram usadas para a previsao de inibidores de
protease para o virus HIV® (RAO et al., 2009), para previsdo da permeabilidade a barreira,
hematoencefélica e ligagdo a soroalbumina (KARELSON et al., 2008), para previsao de
inibidores da Furina, capazes de evitar a maturacao das toxinas produzidas pelo Bacillus
anthracis, ( WORACHARTCHEEWAN et al., 2009) e para a geragdo de um modelo de
QSAR usado na previsao de toxicidade de pirril-aril-sulfonas, utilizadas como inibidores
nao nucleosidicos de transcriptase reversa para o tratamento da AIDS (CHAMJANGALI,
2020).

Considerando toda a contextualizacao e fundamentos tedricos abordados até aqui,
a conducao de uma triagem virtual se faz necessaria para aumentar o nimero de potenciais
candidatos a farmacos, por meio de algoritmos de aprendizado de méaquina. Esse enfoque
computacional representa um avanco fundamental na pesquisa da doenca de Alzheimer,
pois a demanda por novos tratamentos eficazes e preventivos é iminente, dada a crescente

prevaléncia da doenca em uma populagao envelhecida.

9 Do inglés Human Immunodeficiency Virus
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3 TRABALHOS RELACIONADOS

Nesta secao serao apresentados o estado arte sobre o tema de pesquisa, além de

outras aplicagoes técnicas de modelos de aprendizado de maquina.

3.1 Estado da arte

Apos realizar uma consulta na literatura, um conjunto de artigos foram encontrados,
os quais fornecem diferentes abordagens para o desenvolvimento de modelos QSAR.
Dentre elas, destacam-se as técnicas de aprendizado de maquina supervisionado e nao
supervisionado, aprendizado profundo, rede neural convolucional, técnicas de aprendizado
de transferéncia e aprendizado de maquina baseado em grafos (SAKAI et al., 2021;
GUPTA et al., 2021). Além disso, esses artigos exploram diferentes conjuntos de descritores

moleculares para a predicao da atividade de inibidores da AChE para a doenga de Alzheimer

(MOUCHLIS et al., 2020).

A AChE é uma enzima que desempenha um papel importante para a degradacao da
acetilcolina no cérebro, afetando diretamente a funcgao cognitiva. Por isso, o desenvolvimento
de novos inibidores da AChE é uma area de interesse na pesquisa de novos farmacos para
o tratamento da doenga de Alzheimer (BAO et al., 2023).

Alguns autores ressaltam que uma abordagem hibrida pode ser uma estratégia
eficaz para a identificacdo de compostos naturais com atividade inibitoria contra multiplos
alvos na doenca de Alzheimer. Além disso, a combinacao de abordagens de modelagem
molecular e QSAR pode ser util para a sele¢cdo e priorizacao de compostos para avaliagao
experimental adicional (DAS; CHAKRABORTY; BASUCORRESPONDING, 2019).

Neste estudo de Dhamodharan e Mohan (2022), foram desenvolvidos modelos de
aprendizado de maquina para prever a eficacia de inibidores da AChE e BACEL no trata-
mento da doenca de Alzheimer. Foram usados diversos descritores moleculares e métodos
de aprendizado, obtendo modelos estatisticamente significativos. Esses modelos podem ser
usados no projeto de novos tratamentos para a doenga de Alzheimer (DHAMODHARAN;
MOHAN, 2022).

Apoés as leituras realizadas, percebeu-se que uma abordagem promissora para
tratar a doenca de Alzheimer é a inibicao da AChE, pois ela é uma das principais
proteinas envolvidas na degradagao da acetilcolina, um neurotransmissor crucial para a
funcao cognitiva e sua inibi¢do pode, potencialmente, melhorar os sintomas da doenca de
Alzheimer, como a perda de memoria e a deterioragao cognitiva. A predicao da atividade
de inibidores da AChE é uma tarefa importante para o desenvolvimento de novos farmacos
para a doenca de Alzheimer (DAI et al., 2022).
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Além disso, uma técnica muito utilizada para a predi¢ao da atividade de compostos
quimicos é o uso de modelos QSAR, pois correlacionam a estrutura molecular de um
composto com sua atividade biolégica. O principal desafio é construir modelos QSAR
precisos e confidveis, tendo em vista a complexidade da relagao entre a estrutura molecular e
a atividade biolégica. Nos ultimos anos, houve um aumento consideravel de modelos QSAR,
combinando diferentes abordagens de aprendizado de maquina e descritores moleculares
para melhorar a precisao das predigoes (BAO et al., 2023; DAI et al., 2022).

Por exemplo, alguns estudos combinaram a abordagem de aprendizado de maquina
Random Forest com diferentes tipos de descritores moleculares para a predi¢ao da atividade
de inibidores dda AChE e BACEL. Neste estudo (HU et al., 2019), os autores concluiram
que Random Forest é o melhor modelo de aprendizado para a previsao de drogas e alvos
de Alzheimer.

Outra abordagem promissora para a construgao de modelos QSAR ¢é a utilizacao de
redes neurais artificiais (ANNs - Artificial Neural Networks) combinadas com descritores
moleculares. As ANNs sao capazes de aprender relagoes complexas entre descritores
moleculares e atividade bioldgica, e varias estratégias foram propostas para a construgao
de modelos QSAR baseados em ANNs (DOBCHEV; KARELSON, 2016; CHEIRDARIS,
2020; DHAMODHARAN; MOHAN, 2022).

Por dltimo, destaca-se que a construcao de modelos QSAR para a predicao da
atividade de inibidores da AChE para a doenga de Alzheimer é um tema de pesquisa
em constante evolugao, e diferentes abordagens de aprendizado de maquina e descritores
moleculares estao sendo explorados para melhorar a precisao das predigoes. Acredita-se
que esses modelos sejam tteis para o desenvolvimento de novos farmacos para essa doenca,
contribuindo com o aceleramento do processo de descoberta de medicamentos e reduzindo

0s custos associados.

3.2 Abordagens utilizadas para o desenvolvimento de modelos QSAR

A abordagem de QSAR é amplamente utilizada para a descoberta de medicamentos
e no desenvolvimento de farmacos para diversas doencas, incluindo a doenga de Alzheimer.
Para melhorar a precisao e robustez dos modelos QSAR na predicdo da atividade de
inibidores da AChE para essa condigao, abordagens combinadas tém sido exploradas,
combinando diferentes métodos de aprendizado de maquina e descritores moleculares.
Essas abordagens objetivam aproveitar as vantagens de cada componente para fornecer re-
sultados mais confidveis e abrangentes (TODESCHINI; CONSONNI, 2000; GOLBRAIKH;
TROPSHA, 2003).

A combinacao de diferentes tipos de descritores moleculares é uma das abordagens

mais comuns usadas no desenvolvimento de modelos QSAR. Os descritores moleculares sao



49

representacoes numéricas que capturam caracteristicas estruturais das moléculas, como
informacoes topoldgicas, fisico-quimicas e de conectividade. Ao combinar descritores 2D e
3D, por exemplo, torna-se possivel contemplar uma variedade de informagoes moleculares
importantes para a atividade inibitéoria da AChE. Essa abordagem permite melhorar a
capacidade preditiva dos modelos (FARA; A.L.; OPREA, 2019).

Outra estratégia adotada em modelos QSAR é a juncao de diferentes algoritmos
de aprendizado de méaquina e aprendizado profundo. Esses algoritmos podem incluir
regressao linear, redes neurais, métodos de aprendizado profundo e outros. Cada algoritmo
possui suas proprias capacidades e limitacoes na captura de relagoes complexas entre os
descritores moleculares e a atividade inibitéria da AChE. Ao combinar esses algoritmos

em um modelo, é possivel aproveitar suas vantagens individuais e obter uma previsao mais

precisa e confidvel (CARPENTER; HUANG, 2018).

Além disso, a validacao cruzada e a avaliacao de desempenho realizadas de modo
adequado sao importantes no desenvolvimento de modelos QSAR. A divisdo adequada
dos conjuntos de treinamento e teste, juntamente com técnicas como validacao externa e
bootstrapping, permitem avaliar a robustez e a generalizagdo dos modelos. Essas etapas

sao fundamentais para garantir que os modelos QSAR sejam confidveis e possam fornecer
previsoes precisas e tteis (PANOV; DZEROSKI, 2007; PARVANDEH et al., 2020).

Essas abordagens tém o potencial de impulsionar a descoberta e o desenvolvimento
de novos compostos terapéuticos com maior eficacia e se mostram promissoras na luta

contra essa doenca neurodegenerativa.

3.3 Outras aplicacoes

Dada a rapida disseminacao da COVID-19 e sua alta mortalidade, torna-se urgente
descobrir medicamentos especificos para combater o virus SARS-CoV-2 (GUY et al., 2020).
Nesse contexto, técnicas de aprendizado de maquina tém sido utilizadas para apoiar a
triagem virtual na busca por inibidores de alvos moleculares relacionados com SARS-CoV-2.
Uma dessas proteinas, a protease MP™, ¢é essencial dentro do ciclo viral, ou seja, seus

inibidores poderiam bloquear a replica¢ao viral (TEJERA et al., 2020).

Uma busca na literatura revelou algumas aplicacoes de técnicas de aprendizado
de maquina no contexto da COVID-19. Dentre elas, destaca-se o uso de aprendizado
de maquina em imagens médicas para diagnosticar pneumonia relacionada a COVID-19.
Vale ressaltar que os modelos construidos e suas avaliagoes tiveram um alto risco de viés,
ocasionados em virtude de relatérios e uma combinagao inadequada de pacientes com
e sem COVID-19. No entanto, nenhum dos 145 modelos de previsao construidos foram

recomendados para serem usados na pratica (WYNANTS et al., 2020).

Em outro estudo, ferramentas computacionais de biologia estrutural e aprendizado
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de méquina (rede neural artificial) foram utilizadas para prever a presenga de antigenos e
identificar potenciais epitopos de células T. epitopo ou determinante antigénico é a menor
porcao de antigeno com potencial de gerar a resposta imune. O referido estudo também
fez uso de algoritmo de acoplamento (docking) computacional para estimar a superficie de
SARS-CoV-2 que interage com seu receptor humano conhecido (ACE2) (FAST; CHEN,
2020).

Algoritmos baseados no aprendizado de maquina também foram utilizados para
melhorar identificacdo de casos de COVID-19, usando uma pesquisa na web baseada em
telefone celular, capturando as manifestagoes mais comuns da doenga (sinais e sintomas),
juntamente com o histérico basico de viagens dos usuarios (RAO; VAZQUEZ, 2020).

Por 1ltimo, a combinacgao do algoritmo de aprendizado de maquina supervisionado
(arvores de decisdo) com processamento digital de sinais foi usada para realizar analises
de genoma. O método proposto identifica uma assinatura genémica do virus responsavel
pela COVID-19 e a usa, em conjunto com uma abordagem livre de alinhamento baseada
no aprendizado de maquina, para uma classificacao ultrarrapida, escalonavel e altamente
precisa de genomas inteiros do virus SARS-CoV-2 (RANDHAWA et al., 2020).
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4 PROPOSTA DE SOLUCAO: TRIAGEM VIRTUAL UTILIZANDO CONSENSO

ENTRE MODELOS QSAR E BUSCA POR SIMILARIDADE

Neste trabalho, uma pesquisa aplicada foi realizada, pois “objetiva gerar conheci-

mentos para aplicagao pratica dirigidos a solugao de problemas especificos” (GIL, 2017).

Além disso, foi utilizada uma abordagem mista quanti-qualitativa, ou seja, foram realizadas

pesquisas que combinam elementos de abordagens de pesquisa qualitativa e quantitativa

com o propésito de ampliar e aprofundar o entendimento sobre os temas de pesquisa e a
confirmagao/validacao dos resultados (JOHNSON; ONWUEGBUZIE; TURNER, 2007).

A pesquisa também tem um carater exploratério, pois “proporciona maior famili-

aridade com o problema, com vistas a torna-lo mais explicito ou a constituir hipoteses,

tendo como principal objetivo o aprimoramento de ideias ou a descoberta de intuigoes”

(GIL, 2017). Desta forma, as seguintes etapas serao realizadas ao longo deste trabalho:

4.1

o pesquisa bibliografica, visando compreender os conceitos necessarios para realizacao

do estudo, assim como identificar na literatura os trabalhos correlatos e refinar a

metodologia proposta.

pesquisa experimental, realizando uma investigacdo empirica na qual o pesquisador
manipula e controla varidveis independentes e observa as variagoes que tal manipula-
¢ao e controle produzem em variaveis dependentes. Variavel é um valor que pode ser
dado por quantidade, qualidade, caracteristica, magnitude, variando em cada caso
em particular. Variavel independente é aquela que influencia, determina ou afeta a

dependente. Variavel dependente é aquela que vai ser afetada pela independente.

estudo de caso, a ser realizado empregando bases de dados contendo substancias
quimicas e dados bioldgicos, assim como algoritmos de aprendizado de maquina e
aprendizado profundo a fim de identificar potenciais candidatos a farmacos para o
tratamento da doenca de Alzheimer, assim como avaliar o desempenho de diversas

técnicas de aprendizado de méaquina.

Estruturacao da metodologia empregada

A metodologia proposta para realizagdo deste trabalho foi estruturada em quatro

etapas, como ilustra a Figura 15.
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Figura 15 — Principais etapas envolvidas na metodologia empregada neste trabalho. Fonte:
Adaptado de (TROPSHA et al., 2017)

Definigdo do alvo quimico / biolégico / toxicoldgico

0Organizagdo do conjunto de dados (conjunto de dados original)
Avaliagdo da acuracia do conjunto de dados (conjunto de dados acurado)
Selegdo e cdleulo dos descritores (varidveis) moleculares

PREPARAGAO DOS DADOS

Modelagem do conjunto de dados

Divisdo do conjunto de dados em conjuntos de treinamento e teste
Construgao dos modelos usando os conjuntos de treinamento
Validacao dos modelos usando conjuntos de teste
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. Execugdo do procedimento de triagem virtual
. Busca por similaridade
. Previsdo de consenso dos compostos com os modelos obtidos

TRIAGEM VIRTUAL EM BASES
DE DADOS QUiMICOS

4.1.1 Etapa 01 - Preparacao dos dados

4.1.1.1 Defini¢ao do alvo quimico / biolégico / molecular

O alvo bioldgico definido foi a enzima Acetilcolinesterase, também conhecida como
AChE. A AChE é uma enzima envolvida na degradagao do neurotransmissor acetilcolina,

desempenhando um papel fundamental na transmissao de sinais nervosos no sistema
nervoso (DHAMODHARAN; MOHAN, 2022).

4.1.1.2 Organizacao do conjunto de dados (conjunto de dados original)

Para a construgao dos modelos (conjunto de treinamento e testes, e a validagao

externa) foram utilizadas as seguintes bases de dados:

o ChEMBL (www.ebi.ac.uk/chembl), base utilizada para selegdo das amostras (com-

postos quimicos).

o DUD-E, dude.docking.org/targets/aces), base utilizada para obtengao de compostos

de referéncia para a similaridade.

e PubChem (pubchem.ncbi.nlm.nih.gov/rest/pug), base utilizada para selecionar com-

postos para a etapa de triagem virtual.

4.1.1.3 Avaliacdo da acurdcia do conjunto de dados (conjunto de dados acurado)

Para garantir a acuracia dos dados, adotou-se o fluxo proposto por Tropsha e
colaboradores (FOURCHES; MURATOV; TROPSHA, 2016):


https://www.ebi.ac.uk/chembl/
https://dude.docking.org/targets/aces
https://pubchem.ncbi.nlm.nih.gov/rest/pug
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e passo 1: Preparo, de um ponto de vista quimico, do conjunto de dados, que segue

um protocolo previamente estabelecido e permite a identificacdo e corre¢ao de erros

nas estruturas quimicas (FOURCHES; MURATOV; TROPSHA, 2010).
 passo 2: Duplicatas identificadas (compostos repetidos) sao analisadas e removidas.
o passo 3: Realiza-se uma analise da variabilidade experimental intra e interlaboratorial.

o passo 4: Exclusao de fontes de dados nao confiaveis, ou seja, dados com alta variagao

nos valores dos ensaios.

» passo 5: Deteccao e analise dos “cliffs” relacionados aos dados de atividade biologica

(MAGGIORA, 2006).

Todas as estruturas quimicas e informacoes biologicas correspondentes foram pa-
dronizadas usando o Standardizer v.20.8.0 (ChemAxon, Budapest, Hungary, disponivel em:
www.chemaxon.com) (ALVES et al., 2021). A partir desta ferramenta, compostos inorga-
nicos, contra-ions, metais, compostos organometalicos e misturas foram removidos. Além
disso, quimiotipos especificos, como anéis aromaticos e grupos nitro, foram normalizados.
Também foram excluidas as duplicatas da seguinte forma: (i) se as duplicatas tivessem
atividade biologica diferente, ambas as entradas foram excluidas; e (ii) se os resultados

relatados para as duplicatas fossem os mesmos, uma entrada era mantida no conjunto de
dados e a outra era excluida (ALVES et al., 2021).

4.1.1.4 Caélculo dos descritores (varidveis/atributos) moleculares
Trés tipos de estratégias computacionais foram utilizadas para a geragao de descri-
tores 2D para as amostras (compostos) do conjunto de dados:

 funcdo Fingerprints de Harry Morgan (FIGUERAS, 1993);

e software para geracao de descritores SIRMS (Simplex Representation of Molecular

Structure), disponivel em www.gsardu.com/pages/sirms.php

« biblioteca RDKit (rdkit.Chem.MoleculeDescriptors.MolecularDescriptorCalculator),

disponivel em www.rdkit.org/docs/source/rdkit.ML.Descriptors. MoleculeDescriptors.html.

4.1.2 Etapa 02 - Construcao dos modelos QSAR
4.1.2.1 Conjuntos de dados

Os conjuntos de dados utilizados neste trabalho foram compostos de descritores
gerados por diferentes ferramentas (Morgan, SIRMS e RDKit). O bloco Y (varidvel
dependente) é formado por dados bioldgicos de uma cole¢cdo de compostos, ativos e

inativos, enquanto que o bloco X (varidveis independentes) é composto por um conjunto


http://www.chemaxon.com
http://www.qsar4u.com/pages/sirms.php
https://www.rdkit.org/docs/source/rdkit.ML.Descriptors.MoleculeDescriptors.html
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de descritores moleculares referentes a cada estratégia de obtengdo. A Figura 16 ilustra

a combinacao entre os algoritmos de aprendizado de méaquina e os tipos de descritores

selecionados para analise.

Figura 16 — Representacao esquematica ilustrando o conjunto de dados usado para cons-

trugao dos modelos (SVM, MLP, RF e TensorFlow), combinados com os
descritores calculados (RDKit, SIRMS e Morgan). Fonte: Autoria prépria.
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4.1.2.2 Divisao do conjunto de dados em conjuntos de treinamento e teste

A divisao dos conjuntos de dados (treinamento e testes) e de avaliacao externa foi

realizada selecionando aleatoriamente as instancias e aplicando o método de validagao

cruzada 5-fold (TROPSHA et al., 2017), levando em consideragao as seguintes etapas:

o conjunto de dados total com atividade experimental definida foi aleatoriamente

dividido empregando a técnica de bootstrap em cinco subgrupos de tamanhos iguais;

em seguida, um destes subgrupos (20% de todos os compostos) foi definido como

conjunto de validacao externa;

0s quatro conjuntos restantes formaram o conjunto de treinamento (80% de todo o

conjunto de dados);

esse procedimento foi repetido cinco vezes, permitindo que cada um dos cinco

subconjuntos fosse usado como conjunto de validacdo externa;

¢ importante ressaltar que o conjunto de validagao externa nunca foi usado na

construgao e/ou sele¢ao dos modelos;

na validagdo externa, através dos 20% dos dados do conjunto original, foi avaliado o

desempenho dos modelos treinados e testados. Para tanto, foi utilizado a validagao
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cruzada estratificada com a mesma parametrizacao utilizada para o treinamento e

testes, conforme ilustrado na Figura 17.

Figura 17 — Etapas empregadas no desenvolvimento dos modelos de aprendizado de mé-
quina. Fonte: Autoria prépria.
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4.1.2.3 Construcao dos modelos usando os conjuntos de treinamento

O esquema geral utilizado para construcao dos modelos combinou trés algoritmos
supervisionados (SVM, MLP e RF) e um algoritmo de aprendizado profundo utilizando a
biblioteca TensorFlow, com os quatro tipos de descritores moleculares obtidos nas etapas
prévias (Figura 16). Os modelos foram construidos usando a linguagem Python 3 e as
seguintes bibliotecas foram utilizadas (PEDREGOSA et al., 2011):

o sklearn.ensemble.RandomForestClassifier (para RF), disponivel em: scikit-learn.org;

o scikit-learn 0.23.2 (para SVM), disponivel em: scikit-learn.org.

Nesta etapa, foi utilizada uma técnica para otimizacao de hiperparametros para
fins de comparacao: a Busca aleatoria: sklearn.model selection.RandomizedSearchCV,

disponivel em: scikit-learn.org.

4.1.2.4 Validacao dos modelos usando conjuntos de teste

Para avaliacdo do poder de generalizacao dos modelos, a técnica de validagao
cruzada (CV) 5-fold foi utilizada com base na biblioteca sklearn.model_selection com

o método Stratified KFold e o pardmetro de nimero de divisao igual a 5.


https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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O conjunto de dados total com atividade experimental definida foi dividido em cinco
subgrupos de tamanhos iguais. Entdo, um destes subgrupos (20% de todos os compostos)
foi definido como conjunto de validacao externa e os quatro conjuntos restantes formaram

o conjunto de treinamento (80% de todo o conjunto de dados).

Esse procedimento foi repetido cinco vezes, permitindo que cada um dos cinco
subconjuntos fosse usado como conjunto de validagao externa. Os modelos foram gerados
usando apenas o conjunto de treinamento. E importante enfatizar que o conjunto de
valida¢do externa nunca foi empregado para geracao e/ou selecao dos modelos. Cada
conjunto de modelagem ¢ dividido em varios conjuntos de treinamento e teste; entao os
modelos sao gerados usando compostos de cada conjunto de treinamento e aplicados aos
conjuntos-teste para avaliar a robustez e a capacidade preditiva dos modelos. A Figura 18

ilustra o processo para execucao da validagao cruzada.

Figura 18 — Processo empregado na etapa de validagdo cruzada. Fonte: Autoria prépria.
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4.1.2.5 Selecao dos modelos para validacao externa

Nessa etapa, os modelos foram avaliados de acordo com as seguintes métricas:

« acuracia (ACC);

« sensibilidade (Se) e especificidade (Sp);



o7

« valor preditivo positivo (VPP);
o valor preditivo negativo (VPN);
« area sob a curva ROC (AUC);
« medida F ou F score;

« coeficiente Kappa de Cohen (Cohen’s k);

4.1.2.6 Teste de permutacao

O teste de permutacao tem o objetivo de avaliar se o modelo sofreu overfitting
(sobreajuste). Para tanto foi empregada a fungao permutation test_score (sklearn.model -
selection) em scikit-learn (PEDREGOSA et al., 2011), com 10 permutagoes e a validagdo
cruzada de 5 folds, conforme recomendagao de (JORNER et al., 2021).

O valor de p foi avaliado com a finalidade de indicar a completa falta de aprendizado,
quando ha randomizacao dos dados. Isso permite a busca por uma forte evidéncia de que

os modelos nao estao apenas aprendendo ruido, mas estao encontrando um valor real.

4.1.3 Etapa 03 - Validacao dos modelos

4.1.3.1 Previsao de consenso da avaliacido externa definida no Dominio de Aplicabilidade

O dominio de aplicabilidade foi definido a partir das seguintes etapas:

1. avaliacao da similaridade molecular: a similaridade molecular de um bit de impressao
digital corresponde a um fragmento da molécula obtido a partir da impressao digital
das moléculas, tendo como métrica a similaridade padrao obtida pelo coeficiente de
Tanimoto. Nesta etapa, foi utilizado o programa KNIME Analytics (KNIME, 2021),
com a biblioteca RDKit e a funcao rdkit. DataStructs. FingerprintSimilarity(). Vale
destacar que cada bit de impressao digital corresponde a um fragmento da molécula

onde as moléculas semelhantes tém muitos fragmentos em comum.

2. depois da avaliacao de similaridade molecular, o valor da probabilidade associada a
previsao de cada instancia dentro do grupo de moléculas similares é definida, variando
de acordo com cada algoritmo de classificagdo. A funcao predict _proba foi utilizada
para a obtengao da forca de ligagdo a um rétulo ou score (varidvel threshold _ad) de
cada instancia a um rétulo (0 ou 1 - ativo ou inativo, respectivamente) calculados

para cada algoritmo.

3. ap0s o céalculo do valor de AD, modelos que apresentaram score maior que o limite
AD (threshold _ad) foram classificados como modelos AD.
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Apoés a identificacao do grupo de moléculas que formam o AD, foi medido o grau

de confianca das previsdes (0 quao certo um modelo de aprendizado de maquina esta sobre

sua previsao) de cada molécula a um rétulo (Figura 19). Isto foi considerado da seguinte

forma, apés avaliagdo se a molécula recebeu um valor previsto (ativo ou inativo), por

descritor:

1. se a molécula obteve consenso de um mesmo rétulo (ativo ou inativo) em todos os

descritores, esta molécula se enquadra no grupo de Consenso.

2. se essa molécula estd também no grupo AD de todos os descritores (score maior que

o limite AD calculado), ela se enquadra no grupo de AD do respectivo descritor em

questao.

3. se a molécula estd em todos ADs, de todos os descritores, com o mesmo roétulo, ela

se enquadra no grupo de Consenso AD.

4. enfim, o valor do rétulo referente a molécula é comparado em todos os descritores,

descritores AD e consenso AD. Se o rétulo é o mesmo, a molécula fard parte do

grupo Consenso Rigor.

Figura 19 — Etapas empregadas para a previsao de consenso e constru¢ao do AD
Autoria propria.
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A Tabela 4 ilustra um exemplo de como tabular os dados.
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Tabela 4 — Exemplo de tabulagdo de consenso para obtencdo do AD.

Descritor | Desc. | Desc. | Desc. Consenso | Consenso
SMILES 1 1AD| 2 |2AD | Consenso AD Rigor
Molécula 1 1 1 1 1 1 1 1
Molécula 2 0 0 0 0

4.1.4 Etapa 04 - Triagem virtual em bases de dados quimicos

4.1.4.1 Previsao de consenso dos compostos com os modelos obtidos

Os modelos do grupo “Consenso com rigor” obtidos a partir do consenso dos

descritores demonstram quais modelos (obtidos a partir de diferentes tipos de descritores

e diferentes algoritmos) sdo mais eficientes na previsao da propriedade-alvo (atividade

biolégica). A seguir, os modelos podem ser aplicados em uma grande base de dados

quimicos como filtros moleculares, onde novamente é avaliada a capacidade preditiva de

cada modelo.

O procedimento de consenso (Etapa 03) dos resultados dos modelos para cada

molécula é também aplicado durante a triagem virtual. As moléculas com maior forca de

ligacdo dentro do consenso (hits) ao rétulo de “Ativo” sdo selecionadas.

4.1.4.2 Execucao do procedimento de triagem virtual

A Figura 20 apresenta o passo-a-passo para execucao da triagem virtual, etapa que

serd realizada futuramente.
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Figura 20 — Método proposto para realizacdo da triagem virtual. Fonte: Autoria prépria.
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A préxima secao apresenta os resultados obtidos apods a realizacao de todas as

etapas previstas neste estudo.
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5 AVALIACAO EXPERIMENTAL

Os resultados alcangados neste trabalho serdo apresentados e discutidos neste
capitulo, que se destinam a construcgao e validacao de modelos QSAR direcionados a
doenca de Alzheimer. Estes modelos foram utilizados como filtros moleculares em uma
grande base de dados de compostos com a finalidade de identificar candidatos a farmacos
como potenciais inibidores da enzima AChE. Os resultados completos deste estudo estao

disponiveis no GitHub para acesso publico.

5.1 Preparacao dos dados

5.1.1 Defini¢do do alvo quimico

O alvo bioldgico definido foi a enzima Acetilcolinesterase (AChE) (Figura 21) em
fungao da sua importancia na fisiopatologia da doenca de Alzheimer, pois ela esta envolvida
na degradacao da acetilcolina e sua inibicao pode aliviar os sintomas da doenca. Além disso,
a AChE é um biomarcador reconhecido da doenga (WALCZAK-NOWICKA; HERBET,
2021).

Figura 21 — Estruturas de acetilcolinesterase. Fonte: www.rcsb.org/structure/1b41

A construcao do conjunto de dados de treinamento e teste teve inicio com um total
de 8.832 compostos quimicos, os quais foram submetidos a testes de inibicado da AChE,
usando a API do banco de dados ChemBL ((chembl-webresource-client)) (CHEMBL, 2023).


https://github.com/leandropedrosa/virtual-screening-qsar-alheimer-acetylcholinesterase
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5.1.2 Organizacao e avaliagdo da acuracia do conjunto de dados original

O conjunto de dados foi estruturado em duas categorias distintas: uma destinada
aos dados de treinamento e teste, e a outra voltada para a triagem virtual. Os detalhes

sobre cada uma delas serao fornecidos nas se¢oes subsequentes.

5.1.2.1 Dados de treinamento e testes

Para garantir que os compostos utilizados para o treinamento atendam aos requisitos
necessarios para serem considerados candidatos a farmacos viaveis, as cinco regras de
Lipinski (LIPINSKI et al., 1997) foram aplicadas:

« massa molecular inferior a 500 Daltons;
e nao mais que 5 doadores de ligagoes de hidrogénio;

e nao mais que 10 aceitadores de ligagoes de hidrogénio;

coeficiente de parti¢do octan-1-ol/dgua (Log P) nao superior a 5.

Apo6s a conclusdao da Andlise Exploratéria de Dados (EDA) usando os descritores
e as cinco regras de Lipinski (RDKIT, 2023), 8.832 compostos permaneceram na nossa

amostra.

Apéds a etapa de selecao de recursos, foi necessario realizar uma leve corre¢do no
modelo de classificacdo, a qual consistiu na remoc¢ao de compostos quimicos que nao
se classificavam nas categorias de ativos ou inativos. Essa acao simplifica a tarefa de
classificacdo, uma vez que o modelo se concentra na previsao de apenas duas classes,
representadas numericamente como 1 (ativo) ou 0 (inativo). As seguintes etapas foram

executadas:

« inicializagcao dos dados: Inicia-se com um conjunto de dados com mais de 8.000

compostos quimicos que foram testados para inibir a proteina acetilcolinesterase
(AChE).

« filtragem por proteina: Os dados foram filtrados para selecionar apenas a proteina
de interesse, a AChE.

« filtragem por atividade padrao (IC50): Os dados foram novamente filtrados para
manter apenas aqueles com atividade padrao do tipo IC50, que mede a concentracao

inibitéria em 50%.

« remocgao de valores ausentes: As linhas com valores ausentes na coluna “stan-

dard__wvalue” foram removidas, resultando em 7.549 linhas.
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remocao de valores ausentes: As linhas com valores ausentes na coluna “stan-

dard_value” foram removidas, resultando em 7.549 linhas.

definicao de classes de bioatividade: Os valores na coluna “standard_value”
foram convertidos em classes de bioatividade com base em limites. Compostos com
valores maiores ou iguais a 10.000 foram considerados “inativos”, aqueles com valores
menores que 1.000 foram classificados como “ativos”, e os demais como “min effect”.

Essa acao resultou em 3.570 compostos ativos, 2.187 inativos e 1.792 com “min
effect”.

criacao de DataFrame com colunas selecionadas: Um novo DataFrame
(“data2”) foi criado contendo apenas as colunas relevantes, incluindo a classe de
bioatividade, o identificador de molécula, a estrutura quimica (SMILES) e o valor

padrao. O DataFrame resultante teve 7.549 linhas.

calculo de descritores de Lipinski: Os descritores de Lipinski, que sao caracte-
risticas fisicas das moléculas, foram calculados para os compostos usando a funcao
“mol__descriptors”. Esses descritores incluiram o peso molecular, o nimero de doado-
res de hidrogénio, o nimero de aceitadores de hidrogénio e o coeficiente de particao

octanol-dgua (logP).

filtragem de outliers de pIC50: Os valores de pIC50 (poténcia da atividade)
foram normalizados e os outliers identificados e removidos, resultando em 7.487

compostos.

filtragem final de outliers de pIC50: Os outliers foram novamente identificados

e removidos, resultando em 7.483 compostos.

remocao de linhas com valores ausentes: As linhas com valores ausentes foram

removidas do DataFrame, mantendo 7.483 compostos.

remoc¢ao de coluna redundante: A coluna “standard_value” foi removida do

DataFrame.

filtragem de compostos que violam as regras de Lipinski: As regras de
Lipinski (Peso molecular < 500 daltons, logP < 5, nimero de doadores de hidrogénio
< 5, nimero de aceitadores de hidrogénio < 10) foram verificadas para cada composto.
Os compostos que violaram mais de uma regra foram excluidos, resultando em 6.385

compostos.

salvando dados para classificacao e regressao: Os dados foram separados em
dois DataFrames: um para classificagdo (com coluna “bioactivity class”) e outro

para regressao (sem coluna “bioactivity_ class”).
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e preparagao para a engenharia de caracteristicas: Os dados foram preparados

para a engenharia de caracteristicas, selecionando as colunas “canonical _smiles” e

“molecule__chembl id”, salvando-as em arquivos separados.

o resultado final: O DataFrame resultante contém 4.829 compostos quimicos apods

todas as etapas de filtragem e preparacao de dados.

O resultado final consiste em um conjunto de dados preparado e pronto para

ser usado na criacao de modelos de aprendizado de maquina, tanto para as tarefas de

classificagdo quanto para regressao.

A Figura 22 ilustra o intervalo interquartil (IQR) da distribui¢cdo dos dados,

categorizados em trés classes distintas com base no pIC50:

Figura 22 — Distribuigdo do pIC50 - Alvo (candidatos validos). Fonte: Autoria propria.
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o classe “active”: Composta por 3.507 amostras, esta classe possui uma média de

pIC50 de, aproximadamente, 7.24, com uma dispersao moderada, indicada por um
desvio padrao de cerca de 0.89. Os valores variam de 0 (minimo) a 10.19 (maximo),
sendo a maioria dos dados concentrados entre 6.52 (primeiro quartil) e 7.80 (terceiro

quartil).

classe “inactive”: Composta por 2.186 amostras, essa classe apresenta uma média de
pIC50 de cerca de 4.22 e um desvio padrao de, aproximadamente, 0.67. Os valores
dessa classe variam de 2.00 (minimo) a 5.00 (méximo), com a maior parte dos dados

situada entre 3.98 (primeiro quartil) e 4.75 (terceiro quartil).

classe “min effect”: Com 1.790 amostras, esta classe apresenta uma média de pIC50
em torno de 5.48, com baixa dispersao indicada por um desvio padrao de cerca de
0.29. Os valores dessa classe variam de 5.00 (minimo) a 6.00 (maximo), sendo a

maioria dos dados concentrados entre 5.23 (primeiro quartil) e 5.72 (terceiro quartil).
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A Figura 23 apresenta a distribuicao da frequéncia dos dados com base no pIC50,

apresentando alguns pontos importantes a serem considerados:

Figura 23 — Distribuicao da frequéncia de pIC50. Fonte: Autoria prépria.
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» diversidade de dados: O conjunto de dados parece ser rico e diversificado, abran-
gendo uma gama de valores de pIC50 para cada classe. Essa diversidade é funda-
mental para treinar modelos robustos que possam generalizar bem para novos dados,

contribuindo para evitar o overfitting.

e nimero de amostras: O nimero total de amostras para cada classe (“active”,
“inactive” e “min effect”) é razoavel, o que é importante para treinar modelos
estatisticamente significativos. No entanto, vale ressaltar que quanto mais dados,

geralmente é melhor, especialmente para os modelos de aprendizado profundo.

« diferencgas significativas entre classes: As estatisticas mostram que as médias
de pIC50 sao significativamente diferentes entre as classes, sendo um indicativo
positivo, pois sugere que os modelos tém potencial para aprender a distinguir entre

as diferentes classes de atividade bioldgica.

« baixa dispersao em “min effect”: A classe “min effect” apresenta uma baixa
dispersao, indicada por um desvio padrao baixo, em comparac¢ao com as outras duas
classes. Isso pode ser um desafio, pois os modelos podem ter dificuldade em distinguir

as amostras dessa classe devido a sua proximidade nas caracteristicas.
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« dados desbalanceados: Destaca-se que o niimero de amostras em cada classe esta
desbalanceado, com a classe “active” tendo mais amostras do que as outras duas. Isso
pode exigir técnicas de balanceamento de dados durante o treinamento do modelo

para evitar qualquer viés resultante do desequilibrio das classes.

5.1.2.2 Dados para triagem virtual

Nesta secao é apresentado o fluxo para a criacdo de um conjunto de dados (data-
set) para a triagem virtual de compostos quimicos, usando o PubChem como fonte de
informagoes. A triagem virtual é um processo computacional essencial para a descoberta
de medicamentos, cujo objetivo é identificar compostos quimicos que tém potencial para
se ligar a uma proteina alvo especifica, nesse caso, a AChE (CARPENTER; HUANG,

2018). Os seguintes passos desse fluxo foram executados:

e passo 1: leitura de ligantes conhecidos em um arquivo

— Neste primeiro passo, ligantes conhecidos para a Acetilcolinesterase (AChE)
foram extraidos de um arquivo chamado “actives final.ism”. Esses ligantes

foram usados como consultas-chave na triagem virtual.

— Total de ligantes conhecidos: 453 ligantes.
e passo 2: busca de similaridade no PubChem

— Neste segundo passo, cada um dos ligantes conhecidos foi usado como consulta
em uma busca de similaridade no PubChem. O objetivo foi encontrar compostos
quimicos disponiveis no PubChem que compartilhem semelhancas estruturais

com os ligantes conhecidos.

— Total de compostos semelhantes encontrados: 159.470.
e passo 3: exclusao dos compostos de consulta dos resultados

— Como varios ligantes conhecidos foram usados como consulta, existiu a possibili-
dade de alguns deles fossem devolvidos como resultados da busca de similaridade,
usando outros ligantes como consulta. Para evitar duplicagoes, neste terceiro
passo, os compostos de consulta foram excluidos dos resultados, deixando apenas

os compostos nao duplicados.

— Total de compostos apés a exclusao: 158.597.
» passo 4: filtragem de compostos nao adequados para medicamentos

— Neste quarto passo, os compostos quimicos nos resultados da busca foram
filtrados com base em quatro propriedades moleculares: niimero de doadores

de ligacao de hidrogénio, nimero de receptores de ligacao de hidrogénio, peso
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molecular e logP (partigdo octanol-agua). Esses critérios estao alinhados aos
critérios estabelecidos na regra dos cinco de Lipinski, os quais visam contribuir
com a identificagdo de compostos que tém maior probabilidade de se tornarem

medicamentos:

« numero de doadores de ligagoes de hidrogénio (HBondDonorCount): os
compostos com até 5 doadores de ligagdes de hidrogénio foram mantidos.

Nimero de compostos que atenderam a este critério: 158.360

« numero de Receptores de Ligagoes de Hidrogénio (HBondAcceptorCount): os
compostos com até 10 receptores de ligagdes de hidrogénio foram mantidos.

Numero de compostos que atenderam a este critério: 157.829

* peso Molecular (MolecularWeight): os compostos com um peso molecular
igual ou inferior a 500 foram mantidos. Ntmero de compostos que atenderam
a este critério: 146.837

% coeficiente de Particio Octanol-Agua, XLogP (LogP): os compostos com
um valor de LogP menor que 5 foram mantidos. Nimero de compostos que

atenderam a este critério: 119.056

— Finalmente, o DataFrame foi filtrado para reter apenas os compostos que
atenderam a todos os critérios de Lipinski, simultaneamente, resultando em um
total de 117.379 compostos adequados para experimentos de triagem virtual ou

ancoragem molecular.
e passo 5: desenho das estruturas dos 10 principais compostos

— Neste quinto passo, as estruturas quimicas dos 10 principais compostos da base

de dados acurada foram desenhadas e exibidas, baseada na similaridade (CID).
e passo 6: extracdo de compostos exclusivos com base em SMILES candnicos

— Neste sexto passo, os compostos foram submetidos a um filtragem para garantir
que apenas as estruturas tinicas fossem mantidas, com base em seus SMILES

canonicos, ajudando a reduzir a redundancia na lista de compostos.

— Compostos tnicos apés filtragem: 117.379
e passo 7: salvando os compostos em arquivos

— Por fim, os compostos quimicos resultantes foram salvos em arquivos no formato
.mol, preparando-os para serem utilizados em experimentos de ancoragem

molecular ou triagem virtual.

Vale ressaltar que, a medida que os critérios de triagem foram sendo aplicados,

o nimero de compostos filtrados foi diminuindo, resultando em um conjunto final de
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compostos candidatos que atendem aos requisitos de propriedades moleculares desejadas
para potenciais medicamentos. Os dados também revelam informagoes sobre a dispersao

de propriedades, como peso molecular e LogP, nos compostos que atendem aos critérios de
Lipinski (LIPINSKI et al., 1997).

A Figura 24 ilustra o histograma de peso molecular, revelando que a maioria
das observagoes se concentra no intervalo entre 298.985 e 319.0665, totalizando 12.346
observacoes. Esse grafico permite observar como as contagens de observagoes variam a

medida que o peso molecular aumenta ou diminui.

Figura 24 — Histograma do peso molecular. Fonte: Autoria propria.
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A Figura 25 representa o histograma LogP. Os dados revelam que a maioria das
observagoes tem um LogP entre 1.05 e 1.435, totalizando 4.740 observagoes nesse intervalo.
Além disso, o grafico permite observar como a contagem de observacoes varia conforme o

valor de LogP aumenta ou diminui.

Figura 25 — Histograma do LogP. Fonte: Autoria prépria.
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A dispersao dos pontos no grafico (Figura 26) demonstra como as duas varidveis
MolecularWeight e XLogP estao relacionadas. Esse grafico é 1til para identificar as tendén-
cias, padroes ou correlagoes entre as varidveis. A concentragao dos pontos em uma area

especifica indica a existéncia de uma possivel correlacao ou relagdo entre as duas variaveis.

Figura 26 — Grafico de dispersao de peso molecular vs LogP. Fonte: Autoria propria.
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Portanto, ao término do processo, foram incluidos um total de 117.379 compostos

(Figura 27) para a realizacao da triagem virtual.

Figura 27 — Distribui¢ao do percentual de compostos incluidos e nao incluidos. Fonte:
Autoria prépria.

As Figuras (28, 29, 30, 31, 32) ilustram os 10 principais compostos da base de

dados acurada para a realizacao da triagem virtual.
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Figura 28 — Compostos 1 e 2. Fonte: Autoria propria.
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Figura 29 — Compostos 3 e 4. Fonte: Autoria propria.
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Figura 30 — Compostos 5 e 6. Fonte: Autoria propria.
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Figura 31 — Compostos 7 e 8. Fonte: Autoria propria.

CID 86575094 CID 86575093

Figura 32 — Compostos 9 e 10. Fonte: Autoria prépria.
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5.1.3  Selegao e célculo dos descritores (variaveis) moleculares

Neste estudo, ferramentas e métodos foram utilizados para a selecao e calculo de
descritores moleculares, com o objetivo de caracterizar as moléculas quimicas da base de

dados. Os principais resultados incluem:

 RDKit e MolecularDescriptorCalculator: a biblioteca RDKit, uma ferramenta
de quimica computacional em Python, foi utilizada para calcular varios descritores
moleculares. Esses descritores numéricos resumem as caracteristicas fundamentais
das moléculas, tais como: o tamanho, a forma e a polaridade. Dentre os descritores
calculados, destacam-se o LogP (coeficiente de partigdo octanol-dgua) e o peso
molecular. Esses descritores sao muito utilizados em quimica medicinal e modelagem

molecular (RASHDAN; ABDELMONSEF, 2022).

« Impressoes Digitais Moleculares (Morgan Fingerprint): o RDKit também

proporcionou a capacidade de calcular impressoes digitais moleculares, especifica-
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mente a Impressao Digital de Morgan. Essa representagao binaria (0s e 1s) da
estrutura molecular é calculada pela funcao GetMorganFingerprintAsBitVect. A Tm-
pressao Digital de Morgan é baseada em hashes dos ambientes atomicos da molécula
e é valiosa para tarefas de busca quimica e similaridade molecular, sendo frequente-

mente utilizada em triagem virtual de compostos quimicos e quimica computacional

(FIGUERAS, 1993).

Simplex Representation of Molecular Structure (SiRMS): o SIRMS, ou
Representacgao Simples da Estrutura Molecular, é um método que captura a topologia
e a geometria das moléculas. Ele descreve moléculas como conjuntos de simplexos
(poligonos tridimensionais) que refletem a conectividade entre atomos e a distancia
entre eles. Essa representacao ¢é aplicada em analises estruturais de moléculas e em

simulagoes de dindmica molecular, contribuindo para a compreensao detalhada das
propriedades moleculares (XUE; BAJORATH, 2000).

5.2 Construcao dos modelos QSAR

5.2.1 Modelagem do conjunto de dados

Neste estudo, realizou-se a modelagem do conjunto de dados visando a preparagao

dos mesmos para a criacao e validagao de modelos de aprendizado de maquina e aprendizado

profundo. O conjunto de dados final, apds todas as etapas de selecao e filtragem, foi

composto de 4.829 amostras, distribuidas nas seguintes classes:

e classe 1 (Ativo): este grupo é composto por 2.841 amostras. Essas amostras

representam compostos quimicos que demonstraram atividade como inibidores da
enzima alvo (AChE) e sao potenciais candidatos a farmacos para o tratamento da

doenca de Alzheimer.

classe 0 (Inativo): a classe de inativos é formada por 1.988 amostras. Essas
amostras representam compostos que ndo demonstraram atividade significativa como
inibidores da enzima AChE.

A distribuicao dessas classes pode ser visualizada nas Figuras 33 e 34, que apresen-

tam a frequéncia e densidade das amostras em cada classe.
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Figura 33 — Frequéncia dos dados. Fonte: Autoria prépria.
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Figura 34 — Densidade dos dados. Fonte: Autoria prépria.
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Além disso, os descritores moleculares foram calculados, resultando nas seguintes

caracteristicas:

« nimero de Entradas (Amostras): o conjunto de dados é composto por 4.829

entradas, representando as diferentes amostras quimicas consideradas neste estudo.

e colunas do Conjunto de Dados: o conjunto de dados possui um total de 20

colunas, cada uma com informagcoes especificas. Essas colunas incluem informagoes

como identificadores, propriedades quimicas, classes de bioatividade, dentre outras.

« descritores Moleculares: trés conjuntos distintos de descritores moleculares foram

calculados para cada amostra:

— Morgan: 2048 descritores foram calculados usando o método Morgan, forne-

cendo informagoes detalhadas sobre a estrutura molecular.
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— RDKit: 207 descritores foram obtidos utilizando a biblioteca RDKit, fornecendo

informagoes adicionais sobre as caracteristicas das moléculas.

— SiRMS: 1384 descritores foram gerados por meio do método SiRMS, capturando

os aspectos topoldgicos e geométricos das moléculas.

5.2.2 Divisao do conjunto de dados em conjuntos de treinamento e teste

Na etapa de preparagao do conjunto de dados, os dados foram divididos em
conjuntos de treinamento e teste para permitir a avaliacao do desempenho dos modelos de

aprendizado de méaquina e aprendizado profundo. Esses conjuntos foram assim divididos:

» conjuntos de treinamento (X__train e y__train): esses conjuntos representam
80% dos dados originais. O conjunto X_ train possui a forma (3.863, niimero de
descritores), o que significa que contém 3.863 exemplos de treinamento, sendo que
cada exemplo ¢é caracterizado por um conjunto de descritores moleculares. Por sua
vez, o conjunto y_ train tem 3.863 descritores e contém os rétulos correspondentes
para os exemplos de treinamento. Esses rotulos indicam a classe de bioatividade de

cada amostra, ou seja, se o composto é ativo ou inativo em relacao a enzima AChE.

« conjuntos de validagao externa (X__wval ext e y__val _ext): esses conjuntos
sao destinados a validacao externa e representam os 20% restantes dos dados originais.
O conjunto X wal ezt consiste de 966 exemplos de teste, cada um com descritores
moleculares. O conjunto y_wal ext, por sua vez, tem 966 descritores e contém
os rotulos correspondentes para os exemplos de teste, indicando suas classes de

bioatividade.

5.2.3 Construcao dos modelos usando os conjuntos de treinamento

Neste estagio do processo, esforcos foram dedicados para a criacdo de modelos
de aprendizado de maquina e aprendizado profundo, fazendo uma divisao de dados para
treinamento e testes, validagdo externa, bem como uma busca por hiperparametros usando

RandomizedSearchC'V. Para tanto, foi feito:

o divisao dos dados: primeiramente, uma divisao estratégica dos dados foi feita nos
conjuntos de treinamento e teste, bem como uma divisao adicional para a validacao

externa.
— X__train e y__train compreendem 80% dos dados originais e foram usados para
treinar os modelos.

— X _wal _ext e y wal_ext constituem os 20% restantes e foram reservados para a

validagao externa.
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— A divisao foi realizada usando a funcao train_test split, onde a parcela de teste

corresponde a 20% dos dados.

» definicdo da validacao cruzada estratificada: é uma técnica crucial para a
avaliacdo do desempenho do modelo, a qual foi adotada a abordagem de valida-
cao cruzada estratificada (Stratified KFold) com 5 divisoes. Essa estratégia garante
que todos os subconjuntos incluam a mesma porcentagem de amostras positivas e

negativas, tornando a avaliacdo mais confidvel e justa (ALAMRO et al., 2023).

« busca por hiperpardmetros (RandomizedSearchCV): os modelos de aprendi-
zado de maquina dependem de hiperpardmetros bem ajustados para obter seu melhor
desempenho. Assim, foram definidos os espacos de hiperparametros para trés tipos
de modelos: RandomForestClassifier, SVM e MLP. A busca por hiperparametros
foi realizada por meio da técnica RandomizedSearchCV, que explora combinagoes
aleatérias de hiperparametros dentro dos espacos definidos. Esse processo ocorre em
um loop de validagao cruzada de 5 divisoes para cada modelo. Durante a busca, os
modelos sao ajustados aos dados de treinamento, e os hiperparametros sao otimizados.
Os resultados de desempenho foram apresentados em métricas, dentre elas: acuracia,
MCC (Matthews Correlation Coefficient), Kappa, matriz de confusao e relatério de

classificacao.

 selecdo do melhor modelo): foi escolhido com base em uma métrica de pontuagao
definida. Essa estratégia permite reter o modelo que atinge a maior pontuagao,
garantindo a qualidade do modelo final. Vale ressaltar que esse processo é aplicado a
cada tipo de modelo (RandomForestClassifier, SVM e MLP), resultando nos melhores

modelos de cada categoria.

« tuner para redes neurais (Keras Tuner): a busca por hiperparametros em
redes neurais é uma tarefa desafiadora, para a qual foi utilizado o Keras Tuner. A
funcao “build _model” foi configurada para criar os modelos de redes neurais com
hiperpardmetros ajustaveis, como o niimero de unidades e a taxa de aprendizado.
Um tuner é configurado com a técnica RandomSearch, que explora combinacoes
promissoras de hiperparametros para a rede neural. A busca é limitada a um ntmero
especifico de tentativas (5), com varias execugoes por tentativa (3). Os melhores
modelos de redes neurais identificados pelo tuner sao armazenados como “best -

models”.

5.2.4 Validagao dos modelos usando conjuntos de teste

5.2.4.1 Descritores Morgan: Dados de treinamentos e testes

A Figura 35 apresenta a comparacao dos trés modelos: MLP, SVM e Random

Forest usando os descritores de Morgan.
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Figura 35 — Comparacao dos modelos. Fonte: Autoria prépria.
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Sobre o MLP, a melhor pontuagao média foi 0.8996, o que indica um desempenho
muito bom. As médias das pontuacgoes em diferentes configuragoes de hiperpardmetros
variaram, mas em geral, foram altas, acima de 0.85. Esse resultado demonstra que o MLP
foi consistente em fornecer bom desempenho em varias configuragoes. A Tabela 5 apresenta

o resultado da validacao cruzada estratificada para o algoritmo MLP e descritor Morgan.

Em relacao ao SVM, a melhor pontuagdo média foi 0.8747, o que também é uma
pontuacao consideravel. No entanto, as médias das pontuagoes em algumas configuracoes
foram baixas, por exemplo, 0.5899. Esse resultado indica que o desempenho do SVM
pode ter sido muito sensivel aos hiperparametros, e algumas configuracdes podem nao ter
funcionado bem. A Tabela 6 apresenta o resultado da validagdo cruzada estratificada para

o algoritmo SVM e descritor Morgan.

Ja o Random Forest, a melhor pontuacao média foi 0.8882, que ficou entre as
pontuacgdes do MLP e do SVM. Assim como o SVM, o desempenho do Random Forest
variou em diferentes configuragoes, com algumas tendo médias mais baixas. O Random
Forest também mostrou sensibilidade aos hiperparametros, mas em geral, foi uma escolha
solida. A Tabela 7 apresenta o resultado da validagio cruzada estratificada para o algoritmo

Random Forest e descritor Morgan.

A busca pelos melhores hiperparametros se faz necessaria para a obtencao de
desempenho otimizado (WU et al., 2019). A aplicacao de descritores Morgan em cada um
dos modelos de aprendizado de maquina (MLP, SVM e o Random Forest) revelou suas
configuragoes ideais, demonstrando a importancia do refinamento dos hiperpardmetros

para extrair o maximo potencial desses modelos na analise de dados quimicos e biolégicos.
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Tabela 5 — Score médio e desvio padrao para os hiperparametros treinados e testados na

validagdo cruzada estratificada para o algoritmo MLP e descritor Morgan

Rank

Configuracao

Score Médio

Desvio Padrao

1

10

activation: relu, alpha: 0.01, hidden_ -
layer sizes: 24, learning rate: adaptive,
max_iter: 2000, solver: adam
activation: tanh, alpha: 1.0, hidden_ -
layer sizes: 98, learning rate: constant,
max__iter: 2000, solver: sgd

activation: logistic, alpha: 0.1, hidden_ -
layer sizes: 92, learning_rate: adaptive,
max_ iter: 2000, solver: sgd

activation: tanh, alpha: 10.0, hidden_ -
layer_sizes: 71, learning rate: adaptive,
max__iter: 2000, solver: adam
activation: logistic, alpha: 0.001, hid-
den_ layer_sizes: 16, learning rate:
constant, max_ iter: 2000, solver: sgd
activation: relu, alpha: 0.01, hidden_ -
layer sizes: 73, learning_rate: constant,
max__iter: 2000, solver: sgd

activation: tanh, alpha: 100.0, hidden_ -
layer sizes: 69, learning_ rate: constant,
max__iter: 2000, solver: sgd

activation: relu, alpha: 10.0, hidden_ -
layer sizes: 51, learning_rate: adaptive,
max__iter: 2000, solver: adam
activation: relu, alpha: 100.0, hidden -
layer sizes: 33, learning rate: adaptive,
max__iter: 2000, solver: adam
activation: logistic, alpha: 0.0001, hid-
den_ layer_ sizes: 97, learning rate:
invscaling, max_iter: 2000, solver:
adam

0.8996

0.8918

0.8931

0.8892

0.8915

0.8915

0.8853

0.8967

0.8545

0.8825

0.0084

0.0088

0.0056

0.0097

0.0080

0.0080

0.0072

0.0090

0.0097

0.0101
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Tabela 6 — Score médio e desvio padrao para os hiperparametros treinados e testados na
validagao cruzada estratificada para o algoritmo SVM e descritor Morgan

Rank | Configuracao Score Médio | Desvio Padrao

1 C: 9756.896309824398, gamma; 0.8747 0.0125
3.064599841241146e-05, kernel: rbf

2 C: 608.0332116863503, gamma; 0.8765 0.0071
0.015509913987594298, kernel: rbf

3 C:  0.15252471554120095, gamma: 0.7631 0.0135
0.00010929592787219392, kernel: rbf

4 C:  16.344819951627372, gamma: 0.8405 0.0056
0.09047071957568387, kernel: rbf

D C:  7.4511565022821e-05, gamma: 0.7072 0.0121
1.235838277230692¢-05, kernel: rbf

6 C: 0.004476173538513515, gamma: 0.8395 0.0071
0.004712973756110781, kernel: rbf

7 C: 4.977409198051348e-06, gamma: 0.5899 0.0004
1.1567327199145976, kernel: rbf

8 C: 0.00015201960735785719, gamma: 0.5899 0.0004
1.9223460470643646e-05, kernel: rbf

9 C:  0.015509913987594298, gamma: 0.6283 0.0046
6.156997328235204, kernel: rbf

10 C: 0.00010929592787219392, gamma: 0.7546 0.0070
0.09047071957568387, kernel: rbf

« MLP

— Melhor pontuacao (best score): 0.8996
— Melhores parametros (best_params):
* funcao de ativagao (activation): “relu”
x alpha: 0.01
* numero de neurdnios nas camadas ocultas (hidden_ layer sizes): 24
* taxa de aprendizado (learning rate): “adaptive”
* numero maximo de iteragoes (maz__iter): 2000
x Solver: “adam”

— Pontuagao Média nos Testes (mean__test_score): [0.8996, 0.8931, 0.8545, 0.8825,
0.8618, 0.8853, 0.8967, 0.8892, 0.8918, 0.8915]

« SVM

— Melhores parametros (best_params):

x parametro C: 9756.8963
* parametro gamma: 3.0646e-05

x kernel: “rbf”
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Tabela 7 — Score médio e desvio padrao para os hiperparametros treinados e testados na
validacao cruzada estratificada para o algoritmo Random Forest e descritor

Morgan

Rank

Configuragao

Score Médio

Desvio Padrao

10

bootstrap: False, criterion: entropy,
max_ depth: 18, max_features: 292,
min_samples_leaf: 9, min samples -
split: 3, n_ estimators: 439

bootstrap: True, criterion: entropy,
max_depth: 15, max_features: 409,
min_samples_leaf: 8, min samples -
split: 8, n_ estimators: 221

bootstrap: True, criterion: gini, max -
depth: 11, max_features: 409, min_ -
samples_ leaf: 4, min_ samples_ split: 9,
n_estimators: 763

bootstrap: False, criterion: entropy,
max_depth: 1, max features: 682,
min_samples leaf: 12, min samples -
split: 18, n_ estimators: 574

bootstrap: True, criterion: gini, max_ -
depth: 10, max features: 682, min_ -
samples_ leaf: 16, min_samples_ split:
16, n_ estimators: 289

bootstrap: False, criterion: gini, max_ -
depth: 19, max_ features: 682, min_-
samples_ leaf: 20, min_ samples_ split:
4, n_estimators: 584

bootstrap: True, criterion: gini, max_ -
depth: 9, max_features: 409, min_sam-
ples leaf: 18, min_samples_split: 5,
n_ estimators: 700

bootstrap: False, criterion: gini, max_ -
depth: 7, max_features: 682, min_sam-
ples_leaf: 8 min_samples split: 16,
n_estimators: 134

bootstrap: True, criterion: entropy,
max_depth: 2, max features: 682,
min_samples leaf: 12, min samples -
split: 7, n_ estimators: 485

bootstrap: True, criterion: gini, max_ -
depth: 4, max_features: 292, min_sam-
ples leaf: 8 min_samples_split: 5, n_ -
estimators: 101

0.8882

0.8744

0.8765

0.5899

0.8405

0.8729

0.8237

0.8395

0.7072

0.7631

0.0052

0.0072

0.0071

0.0004

0.0056

0.0047

0.0063

0.0070

0.0121

0.0135
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— melhor pontuacao (best_score): 0.8747

— pontuagao média nos testes (mean__test_score): [0.58995603, 0.6355177, 0.58995603,
0.58995603, 0.62826951, 0.58995603, 0.87471596, 0.58995603, 0.58995603, 0.75459518]

e Random Forest

— Melhores pardmetros (best_params):

*

*

*

*

*

*

*

bootstrap: false

critério de divisao (criterion): “entropy”

profundidade maxima da arvore (max_depth): 18

maximo de features (maz__features): 292

minimo de amostras em folhas (min_samples leaf): 9
minimo de amostras em nos internos (min__samples__split): 3

nimero de estimadores (n__estimators): 439

— Melhor pontuagao (best_score): 0.8882

— Pontuagdo Média nos Testes (mean_test_score): [0.87444986, 0.87652106,
0.70722305, 0.58995603, 0.8405365, 0.87289613, 0.82371053, 0.88817004, 0.83950559,
0.76313837]

Em relagao ao Tensorflow, temos os seguintes resultados:

trial 5 complete: ap6s 13 segundos de execugao, a quinta tentativa (7rial 5) da

pesquisa de hiperparametros foi concluida.

precisao de validacao (val accuracy): a precisao de validagdo da Trial 5 foi de apro-

ximadamente 0.8870, indicando o desempenho do modelo nesta tentativa especifica.

melhor precisao de validagao até o momento: foi de cerca de 0.9107, o que sugere

que a Trial 5 nao superou o melhor desempenho anterior.

tempo total decorrido: o tempo total decorrido durante todo o processo de pesquisa

de hiperparametros foi de 53 segundos.

hiperparametros otimizados: os melhores hiperparametros encontrados sao represen-

tados por um objeto hyperParameters. estes hiperparametros especificos nao foram

fornecidos na saida.

melhor modelo encontrado: o melhor modelo identificado é uma rede neural sequencial

com a seguinte arquitetura:

— camada densa 1 com 416 neuroénios.
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— camada densa 2 com 96 neurdnios.
— camada densa 3 com 1 neurdnio.
— total de parametros no modelo: 892,513.

— todos os pardmetros sao treinaveis ( Trainable params: 892,513), o que significa

que o modelo pode ser ajustado durante o treinamento.

— nao ha pardmetros nao treinaveis (Non-trainable params: 0) no modelo.

5.2.4.2 Descritores SIRMS: Dados de treinamentos e teste

A Figura 36 apresenta a comparacao dos trés modelos: MLP, SVM e Random

Forest usando os descritores SiIRMS.

Figura 36 — Comparacao dos modelos. Fonte: Autoria propria.
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O modelo MLP obteve uma média de pontuagoes durante a busca por hiper-
parametros, variando entre 0.6306 e 0.8693. Essa variacao evidencia a sensibilidade do
desempenho do modelo MLP as diferentes configuragoes de hiperparametros testadas. A
melhor pontuagao encontrada foi de aproximadamente 0.8693, destacando o potencial
do modelo em sua melhor configuragao. A Tabela 8 apresenta o resultado da validagao

cruzada estratificada para o algoritmo MLP e descritor SIRMS.

Ja no modelo SVM, observamos que as médias de pontuagoes variaram entre (0.5899
e 0.8400 durante a busca por hiperparametros. Essa variacao sugere que o desempenho
do modelo SVM também variou consideravelmente ao testar as diversas combinagoes
de hiperparametros. A melhor pontuagao encontrada foi de cerca de 0.8400. A Tabela 9
apresenta o resultado da validagao cruzada estratificada para o algoritmo SVM e descritor
SiRMS.

Durante a exploragao dos hiperparametros, o modelo Random Forest apresentou

médias de pontuagoes, variando de 0.6024 a 0.8364. Assim como nos outros modelos, as
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Tabela 8 — Score médio e desvio padrao para os hiperparametros treinados e testados na
validagao cruzada estratificada para o algoritmo MLP e descritor SIRMS

Rank | Configuracao Score Médio | Desvio Padrao
1 activation: logistic, alpha: 0.0001, hid-| 0.865907 0.0116504
den_layer_ sizes: 97, learning rate:
invscaling, max_iter: 2000, solver:
adam

2 activation: relu, alpha: 0.01, hidden -| 0.859437 0.018464
layer_sizes: 24, learning rate: adaptive,
max_iter: 2000, solver: adam

3 activation: relu, alpha: 0.01, hidden_-| 0.858662 0.00965879
layer sizes: 73, learning_ rate: constant,
max_ iter: 2000, solver: sgd

4 activation: tanh, alpha: 1.0, hidden_ - 0.85581 0.0148686
layer sizes: 98, learning rate: constant,
max__iter: 2000, solver: sgd

5 activation: logistic, alpha: 0.001, hid-| 0.820092 0.0193891
den_ layer_ sizes: 16, learning rate:
constant, max_iter: 2000, solver: sgd
6 activation: relu, alpha: 10.0, hidden -| 0.812843 0.0245042
layer sizes: 51, learning_rate: adaptive,
max__iter: 2000, solver: adam

7 activation: relu, alpha: 100.0, hidden_ -| 0.631635 0.0103565
layer_sizes: 33, learning rate: adaptive,
max_iter: 2000, solver: adam

8 activation: logistic, alpha: 0.1, hidden - | 0.812584 0.0168114
layer sizes: 92, learning rate: adaptive,
max__iter: 2000, solver: sgd

9 activation: tanh, alpha: 100.0, hidden -| 0.647167 0.00662246
layer sizes: 69, learning rate: constant,
max_ iter: 2000, solver: sgd

10 activation: tanh, alpha: 1.0, hidden_-| 0.820092 0.0193891
layer sizes: 98, learning_ rate: constant,
max_ iter: 2000, solver: sgd
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Tabela 9 — Score médio e desvio padrao para os hiperparametros treinados e testados na
validagdo cruzada estratificada para o algoritmo SVM e descritor SIRMS

Rank | Configuragao Score Médio | Desvio Padrao

1 C: 0.0155099, gamma: 0.0155099, kernel: 0.84002 0.00611567
rbf

2 C: 0.00447617, gamma: 0.00471297, ker- |  0.824746 0.00859098
nel: rbf

3 C: 608.033, gamma: 0.0155099, kernel: |  0.869012 0.0149086
rbf

4 C: 0.152525, gamma: 0.000109296, ker- |  0.781768 0.0318786
nel: rbf

5 C: 16.3448, gamma: 0.0904707, kernel: |  0.844679 0.0161889
rbf

6 C: 1.76609, gamma: 6.157, kernel: rbf 0.863319 0.0137963

7 C: 0.0312235, gamma: 4.51856, kernel: |  0.874706 0.0129533
rbf

8 C:0.00015202, gamma: 1.92235e-05, ker- | 0.883253 0.0103789
nel: rbf

9 C: 7.45116e-05, gamma: 1.23584e-05,| 0.711621 0.0161448
kernel: rbf

10 C: 0.00015202, gamma: 0.000109296, | 0.615845 0.0056231
kernel: rbf

pontuagoes mostraram variagoes significativas a medida que diferentes configuracoes de

hiperparametros foram avaliadas. A melhor pontuacio encontrada para o modelo Random

Forest foi de aproximadamente 0.8364. A Tabela 10 apresenta o resultado da validacao

cruzada estratificada para o algoritmo Random Forest e descritor SiRMS.

e Random Forest

— Melhor pontuagao (best_score): 0.8364

Os melhores hiperparametros utilizando os descritores SIRMS foram:

— Melhores parametros (best_params): “bootstrap”: True, “criterion”: “gini”,

M.

“maz_depth”: 18, “max_ features™:

” o«

auto”,

samples__split”: 19, “n__estimators”: 200

min__samples leaf”: 14, “min_ -

— Pontuagoes médias nos testes (mean__test_score): [0.7916, 0.7958, 0.6539, 0.8348,

0.7432, 0.6997, 0.8364, 0.6024, 0.7051

« MLP

, 0.6529]

— Melhor pontuagao (best_score): 0.8693

— Melhores parametros (best _params): “activation”: “logistic”, “alpha”: 0.0001,

“hidden__layer sizes”: 97, “learning rate”: “invscaling”, “maz_iter”: 2000,

M, «

“solver”: “adam”
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Tabela 10 — Score médio e desvio padrao para os hiperparametros treinados e testados na
validacao cruzada estratificada para o algoritmo Random Forest e descritor

SiRMS
Rank | Configuragao Score Médio | Desvio Padrao
1 criterion: entropy, max_depth: 18, 0.883253 0.0103789

max_features: 197, min samples leaf:
9, min_samples_ split: 3, n_ estimators:
439

2 criterion: entropy, max_depth: 15, 0.874706 0.0129533
max_ features: 276, min_samples_leaf:
8, min__samples_split: 8, n_ estimators:
221

3 criterion: gini, max_depth: 11, max_-| 0.869012 0.0149086
features: 276, min_samples_leaf: 4,
min_samples_ split: 9, n_ estimators:
763

4 criterion: entropy, max_depth: 1, max -| 0.683922 0.0156668
features: 461, min_samples_leaf: 12,
min_samples_ split: 18, n_ estimators:
574

5 criterion: gini, max_depth: 10, max_ -| 0.844679 0.0161889
features: 461, min_samples_leaf: 16,
min_samples_split: 16, n_estimators:
289

6 criterion: gini, max_depth: 9, max -| 0.834324 0.0135906
features: 276, min_samples leaf: 18,
min_samples_ split: 5, n_ estimators:
700

7 criterion: gini, max_ depth: 7, max_fea-| 0.835878 0.0179037
tures: 461, min_samples_leaf: 8 min_ -
samples split: 16, n_ estimators: 134
8 criterion: gini, max_depth: 4, max_fea-| 0.781768 0.0318786
tures: 197, min_ samples leaf: 8 min_ -
samples_ split: 5, n_ estimators: 101

9 criterion: entropy, max_ depth: 2, max_ - 0.711621 0.0161448
features: 461, min_samples leaf: 12,
min_samples split: 7, n_estimators:
485

10 criterion: entropy, max_depth: 1, max -| 0.683922 0.0156668
features: 461, min_samples leaf: 12,
min__samples_ split: 18, n_ estimators:

574
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— Pontuagoes médias nos testes (mean__test_score): [0.8633, 0.8113, 0.6306, 0.8693,
0.6464, 0.8475, 0.8066, 0.7893, 0.8594, 0.8183]

« SVM
— Melhores parametros (best_params): “C”: 608.03, “gamma’”: 0.0155, “kernel”:
Cérbf”
— Melhor pontuagao (best_score): 0.8400

— Pontuagoes médias nos testes (mean_ test_score): [0.5900, 0.8400, 0.5900, 0.5900,
0.8247, 0.5900, 0.8341, 0.5900, 0.5900, 0.6158]

Os seguintes resultados foram obtidos em relacao ao Tensorflow:

e trial 5 complete: apdés 10 segundos de execugao, a quinta tentativa (Trial 5) da

pesquisa de hiperparametros foi concluida.

 precisao de validacdo (val_accuracy): a precisdo de validacao da Trial 5 foi de
aproximadamente 0.8064, o que indica o desempenho do modelo nessa tentativa

especifica.

« melhor precisao de validacao até o momento: foi de cerca de 0.8461, o que indica

que a Trial 5 nao superou o melhor desempenho anterior.

o tempo total decorrido: o tempo total decorrido durante todo o processo de pesquisa

de hiperparametros foi de 39 segundos.

o hiperparametros otimizados: os melhores hiperparametros encontrados sao represen-
tados por um objeto hyperParameters. estes hiperparametros especificos nao foram

fornecidos na saida.

o melhor modelo encontrado: o melhor modelo identificado foi uma rede neural sequen-
cial com a seguinte arquitetura:
— camada densa 1 com 192 neurdnios.
— camada densa 2 com 32 neuronios.
— camada densa 3 com 1 neurénio.
— total de parametros no modelo: 272,129.

— todos os pardmetros sao treinaveis (trainable params: 272,129), indicando que o

modelo pode ser ajustado durante o treinamento.

— nao ha pardmetros nao treinaveis (Non-trainable params: 0) no modelo.



86

5.2.4.3 Descritores RDKit: Dados de treinamentos e teste

A Figura 37 apresenta a comparagao dos trés modelos: MLP, SVM e Random

Forest usando os descritores RDKit.

Figura 37 — Comparacao dos modelos. Fonte: Autoria prépria.
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Durante as buscas por hiperparametros, o modelo MLP apresentou uma média de
pontuagao que variou de 0.5899 a 0.8996. Essa grande variacao indica que o desempenho
do modelo MLP foi significativamente influenciado pelas diferentes configuracoes de
hiperparametros testadas. A melhor pontuacao obtida foi aproximadamente 0.8996. A
Tabela 11 apresenta o resultado da validagdo cruzada estratificada para o algoritmo MLP
e descritor RDKit.

No caso do modelo SVM, as médias das pontuacoes variaram de 0.5899 a 0.8996
durante a busca por hiperparametros. Isso indica que o desempenho do modelo SVM
também foi sensivel as diferentes combinacgoes de hiperparametros testadas. A melhor
pontuagao encontrada foi de cerca de 0.8400. A Tabela 12 apresenta o resultado da

validagdo cruzada estratificada para o algoritmo SVM e descritor RDKit.

O modelo Random Forest apresentou médias de pontuagoes variando de 0.5899 a
0.8996 durante a busca por hiperparametros. Da mesma forma que nos outros modelos,
as pontuagoes variaram a medida que diferentes configuragdes de hiperparametros foram
avaliadas. A melhor pontuagao alcancada para o modelo Random Forest foi de, aproxima-
damente, 0.8364. A Tabela 13 apresenta o resultado da validagao cruzada estratificada

para o algoritmo Random Forest e descritor RDK:it.

Os melhores hiperparametros utilizando os descritores RDKit foram:

e Random Forest

— Melhor pontuacao (best_score): 0.9008
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Tabela 11 — Score médio e desvio padrao para os hiperparametros treinados e testados na

validagao cruzada estratificada para o algoritmo MLP e descritor RDKit

Rank

Configuracao

Score Médio

Desvio Padrao

1

10

activation: logistic, alpha: 0.1, hidden_ -
layer_sizes: 92, learning rate: adaptive,
max_ iter: 2000, solver: sgd

activation: logistic, alpha: 0.001, hid-
den_layer_ sizes: 16, learning rate:
constant, max__iter: 2000, solver: sgd
activation: gini, alpha: 100.0, hidden_ -
layer_sizes: 98, learning_ rate: constant,
max_ iter: 2000, solver: sgd

activation: tanh, alpha: 1.0, hidden_ -
layer sizes: 98, learning rate: constant,
max_ iter: 2000, solver: sgd

activation: relu, alpha: 0.01, hidden_ -
layer_sizes: 24, learning_ rate: adaptive,
max__iter: 2000, solver: adam
activation: relu, alpha: 10.0, hidden_ -
layer sizes: 51, learning_rate: adaptive,
max__iter: 2000, solver: adam
activation: tanh, alpha: 10.0, hidden_ -
layer sizes: 71, learning rate: adaptive,
max_ iter: 2000, solver: adam
activation: tanh, alpha: 100.0, hidden_ -
layer_sizes: 69, learning_ rate: constant,
max_ iter: 2000, solver: sgd

activation: logistic, alpha: 0.01, hid-
den_layer_ sizes: 24, learning rate:
adaptive, max_ iter: 2000, solver: adam
activation: logistic, alpha: 0.0001, hid-
den_ layer_ sizes: 97, learning rate:
invscaling, max_iter: 2000, solver:
adam

0.82913821

0.84183318

0.88739418

0.88894657

0.88506157

0.82914927

0.78747126

0.59254402

0.58995603

0.58990944

0.02317217

0.01533405

0.01399989

0.01279425

0.00596097

0.00920324

0.00999211

0.00232471

0.00041358

0.00041358
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Tabela 12 — Score médio e desvio padrao para os hiperparametros treinados e testados na
validagdo cruzada estratificada para o algoritmo SVM e descritor RDKit

Rank | Configuracao Score Médio | Desvio Padrao

1 C: 608.0332116863503, gamma: | 0.89645182 0.00987062
0.015509913987594298, kernel: rbf

2 C:  0.03122348867288777, gamma: | 0.8881687 0.01412344
4.518560951024106, kernel: rbf

3 C:  16.344819951627372, gamma: | 0.87134239 0.0079408
0.09047071957568387, kernel: rbf

4 C:  0.15252471554120095, gamma: | 0.79574902 0.02131956
0.00010929592787219392, kernel: rbf

5 C: 4.977409198051348e-06, gamma: | 0.67330333 0.01679328
1.1567327199145976, kernel: rbf

6 C: 0.00015201960735785719, gamma: | 0.58995603 0.00041358
1.9223460470643646e-05, kernel: rbf

7 C:  7.4511565022821e-05, gamma: | 0.58995603 0.00041358
1.235838277230692e-05, kernel: rbf

8 C: 1.7660944735776943e-06, gamma: | 0.58995603 0.00041358
6.156997328235204, kernel: rbf

9 C: 9756.896309824398, gamma: | 0.85865781 0.01621948
3.064599841241146e-05, kernel: rbf

10 C: 0.004476173538513515, gamma: | 0.85788128 0.01694509
0.004712973756110781, kernel: rbf

M.

— Melhores parametros (best_params): “bootstrap”: False, “criterion”: “entropy”,
“max__depth”: 18, “max_ features”: 29, “min__samples_leaf”: 9, “min__samples_ -
split”: 3, “n__estimators”: 439

— Pontuagbes médias nos testes (mean_test_score): [0.8881687, 0.88791064,
0.71964186, 0.67330333, 0.86461267, 0.87703752, 0.85788128, 0.90085395, 0.86383279,
0.79574902]

« MLP

— Melhor pontuagao (best_score): 0.8995

— Melhores parametros (best__params): “activation”: “logistic”, “alpha”: 0.0001,
“hidden__layer sizes”: 97, “learning rate”: “invscaling”, “maz_iter”: 2000,

M.

“solver”: “adam”

— Pontuagoes médias nos testes (mean__test_score): [0.88506157, 0.82913821,
0.58995603, 0.89955794, 0.59254402, 0.88739418, 0.82914927, 0.78747126, 0.88894657,
0.84183318]

« SVM

— Melhores parametros (best__params): “C”: 608.0332116863503, “ gamma”: 0.015509913987594298,

“kernel”: “rbf”
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Tabela 13 — Score médio e desvio padrao para os hiperparametros treinados e testados na
validagao cruzada estratificada para o algoritmo Random Forest e descritor

RDKit

Rank

Configuragao

Score Médio

Desvio Padrao

10

bootstrap: False, criterion: entropy,
max_ depth: 18, max_ features: 29,
min_samples leaf: 9, min samples -
split: 3, n_ estimators: 439

bootstrap: False, criterion: entropy,
max_ depth: 1, max_features: 69, min_ -
samples_ leaf: 12, min_ samples_ split:
18, n_ estimators: 574

bootstrap: True, criterion: entropy,
max_depth: 15, max features: 41,
min_samples_ leaf: 8, min_samples -
split: 8, n_ estimators: 221

bootstrap: True, criterion: gini, max_ -
depth: 11, max features: 41, min sam-
ples leaf: 4, min_samples split: 9, n_ -
estimators: 763

bootstrap: True, criterion: gini, max_ -
depth: 10, max_features: 69, min_ sam-
ples_leaf: 16, min_samples split: 16,
n_estimators: 289

bootstrap: False, criterion: gini, max_ -
depth: 4, max_features: 29, min_sam-
ples leaf: 8 min_samples_split: 5, n_ -
estimators: 101

bootstrap: True, criterion: gini, max_ -
depth: 9, max_features: 41, min_ sam-
ples leaf: 18, min_samples_split: 5,
n estimators: 700

bootstrap: True, criterion: entropy,
max_depth: 2, max_features: 69, min_ -
samples_ leaf: 12, min_samples  split:
7, n_ estimators: 485

bootstrap: True, criterion: gini, max_-
depth: 9, max_ features: 41, min_ sam-
ples leaf: 8 min samples split: 16,
n_estimators: 134

bootstrap: True, criterion: gini, max_ -
depth: 2, max_features: 69, min_sam-
ples_leaf: 12, min_samples split: 7,
n_estimators: 485

0.90085395

0.86461267

0.8881687

0.88791064

0.87703752

0.79574902

0.85788128

0.71964186

0.86383279

0.67330333

0.01282782

0.01323663

0.01412344

0.01460724

0.01434483

0.02131956

0.01694509

0.01739644

0.01694509

0.01679328
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— Melhor pontuagao (best_score): 0.8964

— Pontuagoes médias nos testes (mean__test_score): [0.58995603, 0.89645182,
0.58995603, 0.58995603, 0.87134239, 0.58995603, 0.85865781, 0.58995603, 0.58995603,
0.59021476]

Os seguintes resultados foram obtidos em relacao ao Tensorflow:

e trial 5 complete: apds 13 segundos de execugdo, a quinta tentativa (7Trial 5) da

pesquisa de hiperparametros foi concluida.

» precisdao de validagdo (val accuracy): a precisao de validagdo da Trial 5 foi de
aproximadamente 0.8870, indicando um desempenho promissor do modelo nesta

tentativa especifica.

o melhor precisao de validacao até o momento: a melhor precisao de validacao encon-
trada até o momento da pesquisa foi de cerca de 0.9107. Portanto, a Trial 5 nao

conseguiu superar o melhor desempenho anterior.

» tempo total decorrido: o tempo total decorrido durante todo o processo de pesquisa
de hiperparametros foi de 53 segundos, mostrando eficiéncia na otimizacao dos

hiperparametros.

o hiperparametros otimizados: os melhores hiperparametros encontrados sdo represen-
tados por um objeto HyperParameters cujos detalhes especificos nao foram fornecidos

na saida.

o melhor modelo encontrado: o melhor modelo identificado foi uma rede neural sequen-
cial com a seguinte arquitetura:
— camada densa 1 com 416 neurdnios.
— camada densa 2 com 96 neuronios.
— camada densa 3 com 1 neurdnio.
— total de parametros no modelo: 892,513.

— o total de parametros no modelo é de 892,513, todos eles treinaveis, o que
significa que o modelo pode ser ajustado durante o treinamento. Nao haviam
parametros nao treinaveis no modelo. Este modelo parece ser bastante complexo

e pode ter a capacidade de capturar padroes complexos nos dados.

5.3 Selecao e validacao dos modelos

Esta etapa visa realizar a avaliagdo externa de modelos de classificaggo QSAR

e considerar a questao do dominio de aplicabilidade (AD) desses modelos. A avaliagao
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externa foi realizada em um conjunto de validacdo externa, que compreendeu 20% dos

dados do conjunto de dados total.

Para tanto, foi realizado o calculo de varias métricas de desempenho do modelo
de classificagdo com base nas previsoes (y_pred) e nos réotulos verdadeiros (y_test) do
conjunto de validacio externa. As métricas incluem: o coeficiente Kappa, Area Sob a
Curva (AUC), sensibilidade, precisao, especificidade, valor preditivo negativo, acurdcia, F1
Score e cobertura. Essas métricas foram utilizadas para avaliar o desempenho geral do

modelo em relacao aos dados de validagao externa.

A obtencao dessas métricas envolveu a realizacao de uma validacao cruzada estrati-
ficada de 5 folds (BEY et al., 2020), com a mesma configuragao utilizada para treinamento
e testes, no conjunto de validagao externa para avaliar o modelo de classificagao (m). O

procedimento envolveu as seguintes etapas:

« divisao dos dados de validagao externa estratificada em 5 folds.

o treinamento do modelo (m) em 4 dos 5 folds, com avaliagao no fold restante, repetindo

0 processo cinco vezes (uma para cada fold).

o coleta das previsoes (fold pred) e dos valores de dominio de aplicabilidade (fold ad)
para cada fold.

 aplicacdo de um limite (threshold ad) aos valores de AD para determinar se um

exemplo esta dentro do dominio de aplicabilidade ou nao.

« combinagao das previsoes do modelo e dos valores de AD com base no limite, levando

em consideracao o dominio de aplicabilidade nas previsoes.

o calculo da cobertura (coverage 5f) para avaliar a proporgao de exemplos que estao

dentro do dominio de aplicabilidade.

o calculo das métricas de desempenho do modelo (usando o Método 1) e das métricas

de desempenho do modelo com AD em relagao aos rotulos verdadeiros.

« apresentacao das estatisticas de avaliacdo do modelo, incluindo métricas de desem-

penho e cobertura.

As tabelas e graficos a seguir apresentam os valores correspondentes a cada métrica
e modelo. Estes incluem os descritores Morgan (Tabela 14 e Figura 38), SIRMS (Tabela
15 e Figura 39) e RDKit (Tabela 16 e Figura 40), os quais foram aplicados aos algoritmos
Random Forest, SVM, MLP e TensorFlow.
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Tabela 14 — Métricas calculadas para cada modelo obtido utilizando o Random forest,
SVM, MLP e TensorFlow com o descritor Morgan e o método de validagao
cruzada estratificada 5-fold para o conjunto de substancias com atividade
frente a enzima AChE

| Kappa | AUC | Sens. | PPV | Espec. | NPV | Acur. | F-score | Cober.
Random forest
Morgan 0,61 | 0,81 | 0,81 | 0,85 | 0,81 | 0,75 | 0,81 0,83 1,00
Morgan AD | 0,82 | 0,88 | 0,99 | 0,95 | 0,78 | 0,93 | 0,94 0,97 0,35
SVM
Morgan 0,59 | 0,79 | 084 | 0,82 | 0,74 | 0,77 | 0,80 0,83 1,00
Morgan AD | 0,76 | 0,88 | 0,93 | 0,91 | 0,83 | 0,86 | 0,89 0,92 0,63
MLP
Morgan 0,65 | 0,82 | 0,87 | 0,84 | 0,78 | 0,81 | 0,83 0,86 1,00
Morgan AD | 0,73 | 0,86 | 0,91 | 0,87 | 0,81 | 0,87 | 0,87 0,89 0,84
Tensorflow
Morgan | 0,73 | 086 | 089 |08 | 084 | 084 087 | 089 |

Figura 38 — Comparacao de métricas para diferentes algoritmos e conjuntos de dados
usando o descritor Morgan. Fonte: Autoria propria.
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Tabela 15 — Métricas calculadas para cada modelo obtido utilizando o Random forest,
SVM, MLP e TensorFlow com o descritor SIRMS e o método de validagao
cruzada estratificada 5-fold para o conjunto de substancias com atividade
frente a enzima AChE

| Kappa | AUC | Sens. | PPV | Espec. | NPV | Acur. | F-score | Cober.
Random forest
Morgan 0,60 | 0,80 | 0,85 | 0,82 | 0,74 | 0,78 | 0,80 0,83 1,00
Morgan AD | 0,88 | 0,93 | 0,98 | 0,95 | 0,88 | 0,95 | 0,95 0,96 0,41
SVM
Morgan 0,53 | 0,76 | 0,84 | 0,78 | 0,68 | 0,76 | 0,77 0,81 1,00
Morgan AD | 0,59 | 0,79 | 0,90 | 0,79 | 0,68 | 0,83 | 0,80 0,84 0,24
MLP
Morgan 0,60 | 0,80 | 0,84 | 0,83 | 0,76 | 0,77 | 0,80 0,83 1,00
Morgan AD | 0,68 | 0,84 | 0,89 | 0,85 | 0,79 | 0,84 | 0,85 0,87 0,82
Tensorflow
Morgan | 069 | 085 ] 084 )08 | 08 |079 | 08 | 086 |

Figura 39 — Comparacao de métricas para diferentes algoritmos e conjuntos de dados

usando o descritor SIRMS. Fonte: Autoria propria.
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Tabela 16 — Métricas calculadas para cada modelo obtido utilizando o Random forest,
SVM, MLP e TensorFlow com o descritor RDKit e o método de validagao
cruzada estratificada 5-fold para o conjunto de substancias com atividade
frente a enzima AChE. Em negrito estao destacados os melhores resultados.

| Kappa | AUC | Sens. | PPV | Espec. | NPV | Acur. | F-score | Cober.
Random forest
Morgan 0,65 | 0,82 | 0,87 | 0,84 | 0,77 | 0,82 | 0,83 0,86 1,00
Morgan AD | 0,87 | 0,92 | 0,98 | 0,95 | 0,86 | 0,95 | 0,95 | 0,97 | 0,35
SVM
Morgan 0,62 | 0,81 | 0,84 | 0,84 | 0,78 | 0,78 | 0,81 0,84 1,00
Morgan AD | 0,80 | 0,90 | 0,93 | 0,92 | 0,86 | 0,88 | 0,91 0,93 0,61
MLP
Morgan 0,60 | 0,80 | 0,86 | 0,82 | 0,74 | 0,79 | 0,81 0,84 1,00
Morgan AD | 0,71 0,85 | 0,90 | 0,87 | 0,80 | 0,85 | 0,86 0,89 0,80
Tensorflow
Morgan | 069 |084]08 |08 | 08 |08 ] 08 | 087 |

Figura 40 — Comparacao de métricas para diferentes algoritmos e conjuntos de dados
usando o descritor RDKit. Fonte: Autoria propria.
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Assim, esta etapa realizou uma avaliagao externa dos modelos de classificagao QSAR,
usando um conjunto de validacdo externa e considerando o dominio de aplicabilidade

por meio dos valores de AD. As métricas de desempenho foram calculadas tanto para
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o modelo-base quanto para o modelo com AD, permitindo uma avaliagao completa do

desempenho do modelo em tarefas de classificagao.

O teste de permutacao foi realizado visando avaliar a significancia estatistica do
desempenho dos modelos de classificacao em relagdo ao conjunto de dados aleatorio. Logo,
os modelos de classificacao treinados foram avaliados em dois cenarios diferentes, sendo

eles:

« cenario 1: Dados reais: a métrica de avaliacao utilizada foi a acuracia, responséavel
por medir a precisao das previsoes do modelo com base nos dados reais. O desempenho

do modelo foi avaliado usando o escore (pontuagoes) real(is).

« cendrio 2: Dados aleatérios (Random): um conjunto de dados aleatério foi criado
com a mesma quantidade de amostras e caracteristicas, porém sem correlacao entre
eles. Esse conjunto de dados aleatérios também foi dividido em dois conjuntos usando
a validagao cruzada estratificada (Stratified K-Fold) com 2 dobras. O desempenho
dos modelos foi, assim, avaliado usando as pontuagoes geradas a partir desse conjunto

aleatorio (score_rand).

Assim, para determinar se o desempenho do modelo com dados reais era estatis-

ticamente significativo ao comparar com o desempenho obtido com dados aleatérios, foi
realizado um teste de permutacao (OJALA; GARRIGA, 2010).

Esse teste consistiu em embaralhar (permutar) as etiquetas das amostras varias vezes
(neste caso, 10 vezes) e calcular a métrica de avaliagao (acurdcia) para cada permutacao
(Tabela 17 e Figura 41). Essa acao resultou na criacdo de uma distribuigao das pontuagoes
de permutacao, que representavam o desempenho por acaso. O p-valor foi calculado como
a proporcao de pontuacoes de permutacao que eram iguais ou melhores do que o escore

real.

Um p-valor muito pequeno, geralmente menor que 0,05, indicaria que o desempenho
dos modelos com os dados reais era estatisticamente significativo em comparac¢ao com o
desempenho aleatério. Portanto, o teste de permutacao permitiu avaliar se os modelos
apresentaram um desempenho estatisticamente significativo em relagao aos dados reais,

em comparag¢ao com os dados puramente aleatorios.
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Tabela 17 — Teste de permutacao

Descritores Algoritmo True score | Média per. | p-valor
Morgan Random Forest 0,84 0,5 0.0910
Morgan Multilayer Perceptron 0,86 0,5 0.0802
Morgan SVM 0,87 0,5 0.0901
SiRMS Random Forest 0,90 0,5 0.0802
SiRMS Multilayer Perceptron 0,91 0,5 0.0808
SiRMS SVM 0,90 0,5 0.0802
RDKit Random Forest 0,85 0,5 0.0902
RDKit Multilayer Perceptron 0,90 0,5 0.0801
RDKit SVM 0,92 0,5 0.0803

Figura 41 — Graficos que ilustram os testes de permutacgao. Fonte: Autoria propria.
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Os descritores sao uma ferramenta importante para a analise de dados quimicos e
bioldgicos, permitindo a representacao de moléculas e substancias de forma estruturada
(XUE; BAJORATH, 2000). Neste estudo, analisamos o desempenho de trés modelos de

aprendizado de méaquina diferentes, aplicando esses descritores:

e Descritores Morgan:

— Random Forest: o modelo obteve um “True score” de 0,84, indicando um
desempenho razoavel. No entanto, destaca-se que o valor de “p-value” foi de

0,0910, sugerindo que esse resultado pode nao ser estatisticamente significativo.
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— MLP: o modelo obteve um desempenho um pouco melhor, com um “True
score” de 0,86. O valor de “p-value” foi de 0,0802, indicando uma melhora

estatisticamente significativa em relagao ao Random Forest.

— SVM: o modelo obteve o melhor desempenho, com um “ True score” de 0,87. No
entanto, o valor de “p-value” foi de 0,0901, sugerindo que, apesar do desempenho
superior, a diferenca em relagdo ao Random Forest pode nao ser estatisticamente

significativa.
e Descritores SiIRMS:

— Random Forest: o modelo obteve um desempenho sélido, com um “True score”
de 0,90. O valor de “p-value” foi de 0,0802, sugerindo que esse resultado é

estatisticamente significativo.

— MLP: o modelo também teve um desempenho muito bom, com um “True
score” de 0,91. O valor de “p-value” foi de 0,0808, indicando uma melhoria

estatisticamente significativa em relacao ao Random Forest.

— SVM: o modelo obteve um desempenho consistente, com um “7True score”
de 0,90. O valor de “p-value” foi de 0,0802, sugerindo que esse resultado é

estatisticamente significativo.
e Descritores RDKit:

— Random Forest: o modelo teve um desempenho razoavel, com um “True score”
de 0,85. O valor de “p-value” foi de 0,0902, indicando que o resultado pode nao
ser estatisticamente significativo.

— MLP: o modelo obteve um desempenho muito bom, com um “True score”

de 0,90. O valor de “p-value” foi de 0,0801, indicando que esse resultado é

estatisticamente significativo.

— SVM: o modelo teve o melhor desempenho, com um “True score” de 0,92. O
valor de “p-value” foi 0,0803, sugerindo que esse resultado é estatisticamente

significativo.

5.4 Triagem virtual em bases de dados quimicos
5.4.1 Execucao do procedimento de triagem virtual

Para cada conjunto de descritores (Morgan, RDKit e SIRMS), quatro algoritmos
de classificagao foram aplicados (SVM, MLP, Random Forest e TensorFlow - Figura 42)
em uma grande base de dados, composta por 101.097 amostras, obtidas da PubChem.
Destaca-se que cada conjunto de descritores possuia diferentes dimensoes, com 2048, 209 e

1764 caracteristicas, respectivamente.
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Figura 42 — Classificagao usando o SVM, MLP, Random Forest e TensorFlow. Fonte:

Autoria propria.
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A Tabela 18 apresenta os valores considerados apenas quando estdao dentro do

dominio de aplicabilidade, com um nivel de confianga superior ao limite de 70% (SUSHKO,

2011).

Tabela 18 — Consenso de modelos (niimero de compostos)

Conjunto de Descritores | SVM | MLP | Random Forest | TensorFlow | Consenso AD
Morgan 45.152 | 41.198 41.060 37.505 6.455
RDKit 56.229 | 89.058 17.183 35.748 3.773
SiRMS 53.447 | 89.156 25.636 20.438 3.629

o Em relagdo aos Descritores Morgan:

— 0 SVM classificou 45.152 amostras como ativas dentro do dominio de aplicabili-

dade.

— o MLP classificou 41.198 amostras como ativas dentro do dominio de aplicabili-

dade.

— 0 Random Forest classificou 41.060 amostras como ativas dentro do dominio de

aplicabilidade.

— o TensorFlow classificou 37.505 amostras como ativas.
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— houve um consenso entre os modelos SVM, SVM AD, Random Forest, Random
Forest AD, MLP e TensorFlow, com 6.455 amostras classificadas como ativas

(Figura 43).

e Para os Descritores RDKit:

— 0 SVM classificou 56.229 amostras como ativas dentro do dominio de aplicabili-
dade.

— o MLP classificou 89.058 amostras como ativas dentro do dominio de aplicabili-
dade.

— 0 Random Forest classificou 17.183 amostras como ativas dentro do dominio de

aplicabilidade.
— o TensorFlow classificou 35.748 amostras como ativas.

— houve um consenso entre os modelos SVM, SVM AD, Random Forest, Random
Forest AD, MLP e TensorFlow, com 3.773 amostras classificadas como ativas
(Figura 43).

o Para os Descritores SIRMS:

— 0 SVM classificou 53.447 amostras como ativas dentro do dominio de aplicabili-
dade.

— o MLP classificou 89.156 amostras como ativas dentro do dominio de aplicabili-
dade.

— 0 Random Forest classificou 25.636 amostras como ativas dentro do dominio de

aplicabilidade.
— 0 TensorFlow classificou 20.438 amostras como ativas.

— houve um consenso entre os modelos SVM, SVM AD, Random Forest, Random
Forest AD, MLP e TensorFlow, com 3.629 amostras classificadas como ativas
(Figura 43).
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Figura 43 — Consenso de classificagao. Fonte: Autoria propria.
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5.4.2 Busca por similaridade

O KNIME Analytics foi utilizado para realizar a busca por similaridade (Figura
44) baseada em quatro compostos ativos (Figura 45) disponiveis na literatura, conforme
detalhamento obtido do artigo de referéncia (GROSSBERG, 2003). Essa pesquisa foi
realizada em uma base de dados altamente precisa, que continha um total de 117.379

compostos.
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Figura 44 — Uso do KNIME Analytics para realizar a busca por similaridade. Fonte:
Autoria prépria.
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Figura 45 — Quatro compostos ativos disponiveis na literatura: Rivastigmine (PUBCHEM,
2023c), Tacrine (PUBCHEM, 2023d), Donepezil (PUBCHEM, 2023a) ¢ Ga-
lantamine (PUBCHEM, 2023b). Fonte: Autoria prépria.
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Para realizar essa busca, foi utilizado o RDKit para extrair os descritores moleculares
e, posteriormente, calcular o coeficiente de similaridade com base na distancia usando
a Similaridade de Tanimoto (MAGGIORA et al., 2014), com um filtro de faixa de 0
a 0,9999999 para retornar as correspondéncias mais proximas. Como resultado final
desse processo, um total de 5.837 compostos foram identificados e selecionados, os quais

apresentaram uma similaridade significativa com os quatro compostos de referéncia.
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5.4.3 Previsao de consenso dos compostos com os modelos obtidos

Ap6s a busca por similaridade, os dados de Coeficiente de Tanimoto (Similarity) e do

Vizinho Mais Préximo (Nearest Neighbor) foram mesclados nos resultados de consenso entre

os descritores (Tabela 19). Esses resultados apresentam as informagoes sobre os compostos

quimicos mais similares identificados em relacdo ao composto de referéncia (Tacrine),
utilizando o coeficiente de Tanimoto na busca por similaridade (MAGGIORA et al., 2014).

Cada linha representa um composto quimico (identificado pelo CID - Chemical Identifier)

e inclui a medida de similaridade em relacdo ao composto de referéncia, juntamente com a

sua estrutura molecular simplificada (CanonicalSMILES) e o composto mais semelhante

encontrado (Nearest Neighbor). A similaridade varia de acordo com a estrutura molecular

dos compostos, sendo que valores mais elevados indicam uma maior similaridade.

Tabela 19 — Consenso com a similaridade

1D CID CanonicalSMILES Nearest Neighbor | Similarity (%)
0 165748451 CC(C)(C)clecececlC(=0)C(F)F Donepezil 0.262530
1 126973612 CC(C)clececclC(=0)C(F)F Donepezil 0.253333
2 118729284 CN(CCCCCCNI1C(=0)c2ccecc2C1=0)Cclcececl Donepezil 0.314754
3 21994169 O=C1INC(=0)c2¢(CCCN3CCC(Cc4cececd) CC3)ccec21 Donepezil 0.385714
4 22132546 Nclcee2e(c1)CN(CCCCN1C(=0)c3eceecec3C1=0)CC2 Donepezil 0.347181
5 12004040 clece2nec(Ne3nencdc3CCN(CC3CCCCC3)Ch)ec2el Galantamine 0.412822
6 54542240 O=CINC(=0)c2c(CCCN3CCc4cccecdC3)ceec2l Donepezil 0.369673
7 54403061 O=CI1INC(=0)c2c(CCCCN3CCc4cececcdC3)ccec2l Donepezil 0.395980
8 60259671 | CCICCCN(Cc2cec(CNC(=0)c3cecde(c3)C(=0)NC4=0)cc... Donepezil 0.332971
9 119536775 O=C(NCCC1CCNC1)clecec(CN2C(=0)c3cecec3C2=0)cl Donepezil 0.322513
10 | 66587765 CCN(CC)clecee(-c2ce(C(=0)NC3CCCc4ececcd3)een2)cl Galantamine 0.399876
11 | 22588138 CCCCC(CC)CNC(=0)CCCCCnlc(=0)[nH]c2cccec2¢1=0 Galantamine 0.326582
12 | 120179720 CNCCCICCN(C(=0)c2ccec3c(c2)CCC(=0)N3)CC1 Donepezil 0.380859
13 | 17956492 Cclec(N(C)C(=0)NCCN2CCC(Cce3ccece3)CC2)c2ecece2nl Tacrine 0.465433
14 647903 CCCCclnc2cccec2e(NC(=0)CN2CCN(C)CC2)c1CCC Tacrine 0.714721
15 1099160 CCCclnec2ccecc2¢(NC(=0)CNC2CCCCC2)c1CC Tacrine 0.674723
16 4218057 CCCclnc2cecec2¢(NC(=0)C[NH+]2CCCCCC2)c1CC Tacrine 0.675076
17 4990629 CCCclnc2ccccc2¢(NC(=0)C[NH+]2CCCCC2)c1CC Tacrine 0.677126
18 6966754 CCCclnc2cccec2¢(NC(=0)C[NH2+]C2CCCCC2)c1CC Tacrine 0.674723
19 | 133412317 CCCclce(NCCC2CCN(C(C)=0)CC2)c2ccece2nl Tacrine 0.548712
20 | 55964361 CC1CC(C)CN(Ce2ccc(CNC(=0)C=Cc3ccence3)cc2)C1 Donepezil 0.302455
21 | 119438861 CCNCeclceeccINC(=0)C1CCCN(C(=0)c2cenec2)Cl Donepezil 0.331806
22 | 121108747 CCCclcee(C(=0)NCC2CCN(c3cenee3)CC2)cecl Donepezil 0.307607
23 | 14783862 Ccleecec1C(=0)NCCC1CCN(Ce2cccec2)CC1 Donepezil 0.345588
24 | 56396266 CC1CC(C)CN(Cc2cec(CNC(=0)c3ccee(F)c3F)cc2)C1 Donepezil 0.309979
25 | 38401175 Cclece(F)cclC(=0)NCeleec(CN2CCC(C)CC2)cel Donepezil 0.332594
26 | 46465375 CclececelC(=0)NCC(=0)NCclcec(CN2CCCC(C)C2)ccl Donepezil 0.331089
27 | 55714142 | CNC(=0)clcec(C=CC(=0)NCc2ccccc2CN2CCCC(C)C2)ccl Donepezil 0.329361
28 | 84422326 | CN(C)CCCNC(=O0)clcec(CNC(=0)c2cec(C(C)(C)C)ec2)ecl Donepezil 0.242925
29 | 95809500 0=C(clcenccl)N1CCC(c2ccec(Ce3ceccee3)n2)CC1L Galantamine 0.307245
30 | 95816347 Cclec(Ce2ccecec2)cc(C2CCCN(C(=0)c3cence3)C2)nl Galantamine 0.348428
31 | 110249502 0=C(clcenecl)N1CCCC(c2cece(Ce3ecece3)n2)Cl Galantamine 0.346926
32 | 109236248 CCICCCN(c2cnce(C(=0)NCCc3ccecedF)c2)Cl Galantamine 0.317481
33 | 109227211 CC1CCN(c2cnce(C(=0)NCCce3ccccc3F)c2)CCl1 Galantamine 0.311528
34 | 109103313 O=C(NCCC1=CCCCC1)clence(C(=0)NCc2cce(F)cc2)cl Galantamine 0.255319
35 | 37027068 O=C(Ncleccee(F)cl)C1CCN(C(=0)c2ccenc2)CC1 Donepezil 0.324111
36 | 46547516 O=C(NCclccenel) C1ICCCN(C(=0)Cc2ccece2)Cl Donepezil 0.327818

Em seguida, foi realizado o consenso, selecionando dentre os 37 compostos, aqueles

que apresentaram uma similaridade superior a 50% (0.50) - Tabela 20.
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Tabela 20 — Consenso com a similaridade

CID Canonical SMILES ]]\\77:;7:;;7“ ?’;{j?)%lamty
647903 CCCCclnc2ccecc2¢(NC(=0)CN2CCN(C)CC2)c1CCC | Tacrine | 0.714721
1099160 CCCclnc2cccec2¢(NC(=0)CNC2CCCCC2)c1CC Tacrine | 0.674723
4218057 CCCclnc2ccecc2¢(NC(=0)C[NH+]2CCCCCC2)clCC | Tacrine | 0.675076
4990629 CCCclnc2cccec2¢(NC(=0)C[NH+]2CCCCC2)c1CC | Tacrine | 0.677126
6966754 CCCclnc2cecec2¢(NC(=0)C[NH2+]C2CCCCC2)c1CC | Tacrine | 0.674723
133412317 | CCCclec(NCCC2CCN(C(C)=0)CC2)c2cceecc2nl Tacrine | 0.548712

Os resultados apresentam os hits finais obtidos por consenso entre quatro algoritmos

e trés descritores diferentes, alcangados por meio da busca por similaridade usando o
Coeficiente de Tanimoto (Tabela 21). Cada hit foi assim detalhado:

CID (Chemical Identifier):
— o identificador tinico do composto quimico.
Canonical SMILES (Simplified Molecular Input Line Entry System):

— uma representacao simplificada da estrutura molecular do composto quimico

em formato de texto.
Nearest Neighbor (Vizinho Mais Préximo):
— 0 composto quimico mais semelhante encontrado na busca por similaridade.
Similaridade (Coeficiente de Tanimoto):
— uma medida de quao similar o composto quimico encontrado ¢ em relagado ao

composto de referéncia. Quanto mais préximo de 1, maior a similaridade.

Abaixo estao alguns exemplos dos hits finais identificados (Figura 46):

CID 647903:

— Canonical SMILES: CCCCclnc2cecec2¢(NC(=0)CN2CCN(C)CC2)c1CCC
— Nearest Neighbor: Tacrine

— Similaridade: 0.714721

Link PubChem: pubchem.ncbi.nlm.nih.gov/compound /647903

CID 1099160:

— Canonical SMILES: CCCclnc2ccecc2¢(NC(=0)CNC2CCCCC2)c1CC

— Nearest Neighbor: Tacrine


https://pubchem.ncbi.nlm.nih.gov/compound/647903
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— Similaridade: 0.674723

— Link PubChem: pubchem.ncbi.nlm.nih.gov/compound /1099160

« CID 4218057:

— Nearest Neighbor: Tacrine

Similaridade: 0.675076

— Link PubChem: pubchem.ncbi.nlm.nih.gov/compound /4218057

« CID 4990629:

— Nearest Neighbor: Tacrine

Similaridade: 0.677126

— Link PubChem: pubchem.ncbi.nlm.nih.gov/compound /4990629

« CID 6966754:

Canonical SMILES: CCCclnc2cccec2¢(NC(=0)C[NH+]2CCCCCC2)c1CC

Canonical SMILES: CCCclnc2ccece2¢(NC(=0)C[NH+]2CCCCC2)c1CC

— Canonical SMILES: CCCclnc2cccec2¢(NC(=0)C[NH2+]C2CCCCC2)c1CC

— Nearest Neighbor: Tacrine

— Similaridade: 0.674723

— Link PubChem: pubchem.ncbi.nlm.nih.gov/compound /6966754

« CID 133412317:

— Nearest Neighbor: Tacrine

— Similaridade: 0.548712

— Link PubChem: pubchem.ncbi.nlm.nih.gov/compound/133412317

Tabela 21 — Consenso final (ntimero de compostos)

Canonical SMILES: CCCclec(NCCC2CCN(C(C)=0)CC2)c2cccec2nl

Conjunto Random Consenso| Consenso Consenso

de Descri- | SVM MLP an TensorFlow ) da Similari-
Forest AD com Rigor

tores dade

Morgan 45.152 | 41.198 | 41.060 37.505 6.455

RDKit 56.229 | 89.058 | 17.183 35.748 3.773 37 6

SiRMS 53.447 | 89.156 | 25.636 20.438 3.629



https://pubchem.ncbi.nlm.nih.gov/compound/1099160
https://pubchem.ncbi.nlm.nih.gov/compound/4218057
https://pubchem.ncbi.nlm.nih.gov/compound/4990629
https://pubchem.ncbi.nlm.nih.gov/compound/6966754
https://pubchem.ncbi.nlm.nih.gov/compound/133412317
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Figura 46 — Compostos finais identificados apods realizar a triagem virtual. Fonte: Autoria

prépria.
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5.5 Discussoes

Apods uma andlise dos resultados, destacam-se alguns pontos:

1. principais resultados:

« significAncia estatistica: os testes de permutagdo nos permitiram calcular o quao
provavel é que a performance dos modelos tenha sido alcangada por acaso. Essa
probabilidade é representada pelos valores de p (p-values) associados a cada
modelo e conjunto de descritores. Em geral, um p-values baixo (geralmente

<0,05) indica que os resultados nao sao devido ao acaso.
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o desempenho do modelo: observamos variagoes significativas no desempenho dos

modelos em diferentes conjuntos de descritores. Por exemplo, o modelo SVM
obteve uma alta acuracia com descritores RDKit, enquanto o MLP obteve uma

alta acuracia com os descritores Morgan.

dominio de aplicabilidade (AD): incorporamos o conceito de Dominio de Apli-
cabilidade (AD), que se refere a capacidade de um modelo fazer previsoes
confiaveis em uma determinada regiao do espago de recursos. Essa avaliacao
foi realizada usando a técnica de validagao cruzada com um limiar de AD. Os
modelos que nao atenderam ao limiar, foram considerados fora do dominio de

aplicabilidade.

2. impacto do AD em relagao aos algoritmos:

+ a inclusao do conceito de AD teve um impacto significativo nos resultados dos

algoritmos, melhorando as métricas em uma média de 20-25%.

ao comparar os modelos com e sem AD, foi possivel observar uma melhora subs-
tancial nas métricas, como Sensibilidade e Especificidade, com ganhos médios
de 20-25%, demonstrando a importancia do AD para melhorar a capacidade

dos modelos em classificar de forma precisa as amostras dentro do seu dominio
de aplicagao (SUSHKO, 2011).

¢ importante destacar que a melhoria variou entre os algoritmos, sendo mais
evidente nos modelos Random Forest e SVM, onde a inclusdo do AD resultou
em média de aprimoramento de 25-30%. Essa descoberta destaca ainda mais a

relevancia do AD como uma ferramenta essencial para otimizar o desempenho
dos modelos em contextos especificos (BASKIN; KIREEVA; VARNEK, 2010).

3. desempenho do TensorFlow em relacao aos algoritmos:

e 0 TensorFlow também apresentou bons resultados, com desempenho semelhante

ou superior em varias métricas em comparagao com os modelos Random Forest,
SVM e MLP, com ganhos médios de 10-15%.

o esses resultados destacam que o TensorFlow é uma escolha robusta para as

tarefas de classificacdo, fornecendo resultados competitivos em diversas métricas.

4. o beneficio do AD em relacao ao TensorFlow:

o ainclusdo do AD melhorou os resultados em termos de Sensibilidade e Especifi-

cidade em comparacao com o TensorFlow, com ganhos médios de 15-20%.

 esses resultados ressaltam que o AD desempenha um papel fundamental na

melhoria da capacidade dos modelos de reconhecer amostras relevantes dentro

do dominio de aplicabilidade.
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Em sintese, a insercao do AD beneficiou, significativamente, o desempenho dos
algoritmos de aprendizado de maquina, melhorando a capacidade de classificar amostras
dentro do dominio de aplicabilidade com ganhos médios de 20-25% nas métricas relevantes
(BASKIN; KIREEVA; VARNEK, 2010; ALAMRO et al., 2023). Além disso, o TensorFlow
se destacou como uma alternativa eficaz e competitiva em relagdo aos algoritmos tradicio-
nais, demonstrando resultados consistentes com ganhos médios de 10-15% nas métricas. A
escolha entre os modelos deve depender das métricas especificas mais relevantes para a
aplicacao, mas considerar o AD é crucial para melhorar a especificidade e a sensibilidade

dos modelos.

5.5.1 Avaliagao dos modelos em uma base de dados externa

Apos treinar e validar os modelos, realizamos uma busca em uma grande base de
dados (com 101.097 amostras) usando os modelos treinados. Essa avaliacdo resultou em

algumas conclusoes significativas:

o desempenho em grandes bases de dados: os modelos foram capazes de classificar com
sucesso uma grande quantidade de amostras presentes na base de dados externa.
Esse feito ressalta a capacidade dos modelos em lidar com conjuntos de dados de

grande escala.

« resultados de consenso: além disso, realizamos o calculo dos resultados de consenso
entre os quatro algoritmos (SVM, MLP, Random Forest e TensorFlow) em trés con-
juntos de descritores diferentes. Essa abordagem nos permitiu identificar compostos
quimicos que foram classificados como ativos em consenso por todos os modelos,

um procedimento importante para ressaltar as descobertas consistentes e confidveis

(ALAMRO et al., 2023).

« busca por similaridade (Tanimoto): outro aspecto importante da avaliacao foi a
execucao de busca por similaridade usando o coeficiente de Tanimoto para identifi-
car compostos quimicos semelhantes aos de referéncia (Tacrine). Essa abordagem
desempenha um papel importante em aplicacoes voltadas para a descoberta de

novos compostos farmacéuticos, ampliando o escopo das possibilidades de pesquisa
(MAGGIORA et al., 2014; GROSSBERG, 2003).

5.5.2 Implicagoes praticas e potencial de aplicacao

Por fim, é importante discutir as implicagoes praticas desses resultados. Os modelos
de machine learning e deep learning que foram treinados revelaram o seu valor quando
aplicados a uma grande base de dados, proporcionando a capacidade de triagem de

compostos quimicos potencialmente ativos. Esse processo economiza tempo e recursos em
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experimentos laboratoriais, priorizando compostos promissores para testes subsequentes
(BAO et al., 2023).

Além disso, a estratégia de busca por similaridade usando o coeficiente de Tanimoto
¢ uma ferramenta importante para identificacao de compostos quimicos que compartilham

caracteristicas com um composto de referéncia, o que pode ser 1til em pesquisa farmacéutica

e quimica medicinal (MAGGIORA et al., 2014; FERREIRA; ANDRICOPULO, 2018).

Portanto, este trabalho discutiu desde os testes de permutagao para avaliagao de
modelos até a aplicacao pratica desses modelos em grandes bases de dados e busca por
similaridade, destacando a relevancia dessas técnicas na descoberta de novos compostos

quimicos com potencial atividade farmacologica.
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6 CONCLUSOES

Este trabalho abordou a aplicacdo de modelos de aprendizado de maquina e
aprendizado profundo de maquina em trés conjuntos de descritores diferentes (Morgan,
RDKit e SiRMS) em uma grande base de dados quimicos para classificagdo de amostras
como ativas ou inativas dentro do dominio de aplicabilidade. Varios modelos, incluindo o
SVM, MLP, Random Forest e TensorFlow, foram treinados e validados para cada conjunto

de descritores.

As principais descobertas e conclusdes deste estudo podem ser sintetizadas da

seguinte forma:

o desempenho variavel por conjunto de descritores: os modelos tiveram desempenhos
variaveis em cada conjunto de descritores. Por exemplo, os descritores Morgan
resultaram em um menor nimero de amostras classificadas como ativas, enquanto os

descritores RDKit tiveram um numero maior de amostras ativas.

« diferencas nos modelos: cada modelo apresentou desempenho diferente para cada
conjunto de descritores, ressaltando a importancia da selecao adequada de modelos

para conjuntos de descritores especificos.

» consenso entre modelos: foi observado que, em todos os conjuntos de descritores, um
numero significativo de amostras foi classificado como ativas em consenso por todos

os modelos, sugerindo a robustez dessas amostras e sua importancia.

e importancia da escolha de descritores: a escolha adequada de descritores revelou-
se critica para o desempenho dos modelos, uma vez que diferentes conjuntos de
descritores capturam informagoes quimicas de maneira tinica, resultando em diferentes

resultados.

» potencial de aplicagoes futuras: os modelos treinados e os resultados obtidos tém po-
tencial de aplicacao em triagem de compostos quimicos, descoberta de medicamentos
e pesquisa farmacéutica, onde a classificacdo precisa de compostos como ativos ou

inativos é fundamental.

« necessidade de validagao externa: embora os modelos tenham demonstrado bons
desempenhos nos dados de validagao interna, a validacao externa em conjuntos
de dados independentes foi essencial para avaliar verdadeiramente a robustez dos

modelos.
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» consideragoes éticas e de seguranca: a aplicacao desses modelos na industria far-
macéutica e quimica deve ser realizada com consideragoes éticas e de seguranca,

garantindo que os compostos identificados como ativos sejam seguros e eficazes.

Portanto, esta analise demonstrou que modelos de aprendizado de maquina e
aprendizado profundo de maquina tém o potencial de melhorar a triagem e a classificacao
de compostos quimicos em grandes bases de dados. No entanto, a escolha criteriosa dos
descritores e modelos é fundamental, assim como a validacao externa é necessaria antes
da aplicagao pratica. A pesquisa continuada nesse campo visa aprimorar ainda mais a
precisao e a eficicia dos modelos, contribuindo para avancos significativos nas areas de

quimica e farmacologia.
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